Publications by authors named "Afrouz Behboudi"

Background: Continuous positive airway pressure (CPAP) has failed to reduce cardiovascular risk in obstructive sleep apnoea (OSA) in randomized trials. CPAP increases angiopoietin-2, a lung distension-responsive endothelial proinflammatory marker associated with increased cardiovascular risk. We investigated whether CPAP has unanticipated proinflammatory effects in patients with OSA and cardiovascular disease.

View Article and Find Full Text PDF

Rationale: We recently demonstrated that patients with coronary artery disease (CAD) and obstructive sleep apnea (OSA) carrying the tumor necrosis factor-alpha allele had increased circulating levels compared with the ones carrying the allele. In the current study, we addressed the effect of (-308G/A) gene polymorphism on circulating levels following continuous positive airway pressure (CPAP) therapy.

Methods: This study was a secondary analysis of the RICCADSA trial (NCT00519597) conducted in Sweden.

View Article and Find Full Text PDF

Obstructive sleep apnea (OSA) is common in patients with coronary artery disease (CAD), in which inflammatory activity has a crucial role. The manifestation of OSA varies significantly between individuals in clinical cohorts; not all adults with OSA demonstrate the same set of symptoms; i.e.

View Article and Find Full Text PDF

Myosin-1C (MYO1C) is a tumor suppressor candidate located in a region of recurrent losses distal to TP53. Myo1c can tightly and specifically bind to PIP2, the substrate of Phosphoinositide 3-kinase (PI3K), and to Rictor, suggesting a role for MYO1C in the PI3K pathway. This study was designed to examine MYO1C expression status in a panel of well-stratified endometrial carcinomas as well as to assess the biological significance of MYO1C as a tumor suppressor in vitro.

View Article and Find Full Text PDF

Background: Several reports indicate a commonly deleted chromosomal region independent from, and distal to the TP53 locus in a variety of human tumors. In a previous study, we reported a similar finding in a rat tumor model for endometrial carcinoma (EC) and through developing a deletion map, narrowed the candidate region to 700 kb, harboring 19 genes. In the present work real-time qPCR analysis, Western blot, semi-quantitative qPCR, sequencing, promoter methylation analysis, and epigenetic gene expression restoration analyses (5-aza-2'-deoxycytidine and/or trichostatin A treatments) were used to analyze the 19 genes located within the candidate region in a panel of experimental tumors compared to control samples.

View Article and Find Full Text PDF

Background: Development of breast cancer is a multistage process influenced by hormonal and environmental factors as well as by genetic background. The search for genes underlying this malignancy has recently been highly productive, but the etiology behind this complex disease is still not understood. In studies using animal cancer models, heterogeneity of the genetic background and environmental factors is reduced and thus analysis and identification of genetic aberrations in tumors may become easier.

View Article and Find Full Text PDF

Endometrial adenocarcinoma (EAC) is the most common form of malignancy in the female genital tract, ranking as the fourth leading form of invasive tumors that affect women. The BDII inbred rat strain has been used as a powerful tumor model in studies of the genetic background of EAC. Females from the BDII strain are prone to develop tumors with an incidence of more than 90%.

View Article and Find Full Text PDF

Background: Genomic alterations are common features of cancer cells, and some of these changes are proven to be neoplastic-specific. Such alterations may serve as valuable tools for diagnosis and classification of tumors, prediction of clinical outcome, disease monitoring, and choice of therapy as well as for providing clues to the location of crucial cancer-related genes.Endometrial carcinoma (EC) is the most frequently diagnosed malignancy of the female genital tract, ranking fourth among all invasive tumors affecting women.

View Article and Find Full Text PDF

Background: The scaffold attachment factor B1 and B2 genes, SAFB1/SAFB2 (both located on chromosome 19p13.3) have recently been suggested as tumour suppressor genes involved in breast cancer development. The assumption was based on functional properties of the two genes and loss of heterozygosity of intragenic markers in breast tumours further strengthened the postulated hypothesis.

View Article and Find Full Text PDF

Female rats of the BDII/Han inbred strain are prone to spontaneously develop endometrial carcinomas (EC) that in cell biology and pathogenesis are very similar to those of human. Human EC are classified into two major groups: Type I displays endometroid histology, is hormone-dependent, and characterized by frequent microsatellite instability and PTEN, K-RAS, and CTNNB1 (beta-Catenin) mutations; Type II shows non-endometrioid histology, is hormone-unrelated, displays recurrent TP53 mutation, CDKN2A (P16) inactivation, over-expression of ERBB2 (Her2/neu), and reduced CDH1 (Cadherin 1 or E-Cadherin) expression. However, many human EC have overlapping clinical, morphologic, immunohistochemical, and molecular features of types I and II.

View Article and Find Full Text PDF

Animal cancer models reduce genetic background heterogeneity and thus, may facilitate identification and analysis of specific genetic aberrations in tumor cells. Rat and human mammary glands have high similarity in physiology and show comparable hormone responsiveness. Thus, spontaneous and carcinogen (e.

View Article and Find Full Text PDF

Human genetic heterogeneity and differences in the environment and life style make analysis of complex diseases such as cancer difficult. By using inbred animal strains, the genetic variability can be minimized and the environmental factors can be reasonably controlled. Endometrial adenocarcinoma (EAC) is the most common gynecologic malignancy, ranking fourth in incidence among tumors in women.

View Article and Find Full Text PDF

Cancer is known to be a genetic disease that is both polygenic and heterogeneous, in most cases involving changes in several genes in a stepwise fashion. The spectrum of individual genes involved in the initiation and progression of cancer is greatly influenced by genetic factors unique to each patient. A study of complex diseases such as cancer is complicated by the genetic heterogeneous background and environmental factors in the human population.

View Article and Find Full Text PDF

We have recently shown in the BDII rat model of human endometrial adenocarcinoma (EAC), rat chromosome 10 (RNO10) is frequently involved in chromosomal aberrations. In the present study, we investigated the association between RNO10 deletions, allelic imbalance (AI) at RNO10q24 and Tp53 mutation in 27 rat EAC tumors. We detected chromosomal breakage accompanied by loss of proximal and/or gain of distal parts of RNO10 in approximately 2/3 of the tumors.

View Article and Find Full Text PDF

Endometrial adenocarcinoma (EAC) is the fourth leading cause of cancer death in women worldwide, but not much is known about the underlying genetic factors involved in the development of this complex disease. In the present work, we used 3 different algorithms to derive tree models of EAC oncogenesis from data on the frequencies of genomic alterations in rat chromosome 10 (RNO10). The tumor material was derived from progenies of crosses between the EAC susceptible BDII inbred rat strain and two non susceptible inbred rat strains.

View Article and Find Full Text PDF

Mucoepidermoid carcinomas (MECs) of the salivary and bronchial glands are characterized by a recurrent t(11;19)(q21;p13) translocation resulting in a MECT1-MAML2 fusion in which the CREB-binding domain of the CREB coactivator MECT1 (also known as CRTC1, TORC1 or WAMTP1) is fused to the transactivation domain of the Notch coactivator MAML2. To gain further insights into the molecular pathogenesis of MECs, we cytogenetically and molecularly characterized a series of 29 MECs. A t(11;19) and/or an MECT1-MAML2 fusion was detected in more than 55% of the tumors.

View Article and Find Full Text PDF

Recent studies have shown that the t(11;19)(q21;p13) translocation in mucoepidermoid carcinomas and benign Warthin's tumors results in a fusion of the N-terminal CREB-binding domain of the cAMP coactivator TORC1 (a.k.a.

View Article and Find Full Text PDF

Analysis of allelic imbalance at polymorphic marker loci is usually employed to identify chromosomal regions affected by recurrent aberrations in tumor genomes. Such regions are likely to harbor genes involved in the onset and/or progression of cancer. Although often used to identify regions of loss of heterozygosity caused by deletions/rearrangements near tumor suppressor gene loci, allelic imbalance can also reflect regional amplification, indicating the presence of oncogenes.

View Article and Find Full Text PDF

Earlier work using comparative genome hybridization (CGH) has shown that rat chromosome 10 (RNO10) is frequently involved in cytogenetic aberrations in BDII rat endometrial adenocarcinomas (EAC). Relative reduction in copy number (chromosomal deletions) was seen in the proximal to middle part of the chromosome, whereas there were increases in copy number in the distal part. The occurrence of RNO10 aberrations was further analyzed in DNA from primary tumor material from 42 EACs and 3 benign endometrial tumors using allelotyping of microsatellite markers.

View Article and Find Full Text PDF

Chromosome translocations in neoplasia commonly result in fusion genes that may encode either novel fusion proteins or normal, but ectopically expressed proteins. Here we report the cloning of a novel fusion gene in a common type of salivary and bronchial gland tumor, mucoepidermoid carcinomas (MEC), as well as in benign Warthin's tumors (WATs). The fusion, which results from a t(11;19)(q21-22;p13) translocation, creates a chimeric gene in which exon 1 of a novel gene of unknown function, designated WAMTP1, is linked to exons 2-5 of the recently identified Mastermind-like Notch coactivator MAML2.

View Article and Find Full Text PDF

The tumor-suppressor gene PTEN (phosphatase and tensin homolog) is frequently inactivated in different types of human tumors. Less is known about the involvement of the homologous gene Pten in animal model systems of cancer. By sequencing one of the introns of rat Pten, we found an informative intragenic PCR marker suitable for genetic studies.

View Article and Find Full Text PDF

The rat provides valuable and sometimes unique models of human complex diseases. To fully exploit the rat models in biomedical research, it is important to have access to detailed knowledge of the rat genome organization as well as its relation to the human genome. Rat Chromosome 10 (RNO10) harbors several important cancer-related genes.

View Article and Find Full Text PDF

The T55 rat radiation hybrid (RH) mapping panel has been reported to retain the entire rat genome at retention frequencies between 22% and 37%. However, we found that a small segment of rat chromosome 10 harboring at least four different genes, including Tp53, was completely absent from the panel (retention frequency = 0%). Two other markers located in the vicinity exhibited much reduced retention (2-6%).

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionud8d4cvqla3ciqpgj5gg7hudh4j0lokd): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once