Publications by authors named "Afrimzon E"

Dynamic light scattering analysis has been demonstrated recently to be a promising tool for the assessment of structural changes taking place inside opaque tissue samples. Specifically, quantification of velocity and direction of cellular motion inside spheroids and organoids has attracted much attention as a potent indicator in personalized therapy research. Here, we propose a method for the quantitative extraction of cellular motion, velocity, and direction, by applying a concept of speckle spatial-temporal correlation dynamics.

View Article and Find Full Text PDF

A common perception exists that glycerol provides an inert-like environment modifying viscosity and index of refraction by its various concentrations in aqueous solution. Said perception is herein challenged by investigating the effects of the glycerol environment on the spectroscopic properties of fluorescein, as a representative fluorophore, using steady-state and time-resolved techniques and computational chemistry. Results strongly suggest that the fluorescence quantum yield, measured fluorescence lifetime (FLT), natural lifetime and calculated fluorescence lifetime are all highly sensitive to the presence of glycerol.

View Article and Find Full Text PDF

In response to the need for reliable cellular models that reflect complex tumor microenvironmental properties, and enable more precise testing of anti-cancer therapeutics effects on humans, a co-culture platform for in-vitro model that enhances the physiology of breast cancer (BC) microenvironment is presented. A six well imaging plate wherein each macro-well contains several separate compartments was designed. Three-dimensional (3D) cancer spheroids are generated and cultured in the inner compartment which is embossed with an array of nano-liter micro-chambers made of hydrogel.

View Article and Find Full Text PDF

Cancer metastasis is known to cause 90% of cancer lethality. Metastasis is a multistage process which initiates with the penetration/invasion of tumor cells into neighboring tissue. Thus, invasion is a crucial step in metastasis, making the invasion process research and development of anti-metastatic drugs, highly significant.

View Article and Find Full Text PDF

The present study investigates the fluorescence properties of BO21 and their dependence on various intracellular conditions. The results obtained with cell-free solutions indicate that the influences of pH and temperature on the fluorescence spectra are negligible, while viscosity, various proteins and heparin have significant influence. In the presence of heparin, a red shift of the emission spectrum (from 515 to 550 nm) is observed, suggesting that this shift cannot simply be attributed to electrostatic interaction between BO21 and the polyanionic heparin, but rather to aggregation of BO21 on the polyanion.

View Article and Find Full Text PDF

Estrogen-induced apoptosis has become a successful treatment for postmenopausal metastatic, estrogen receptor-positive breast cancer. Nitric oxide involvement in the response to this endocrine treatment and its influence upon estrogen receptor-positive breast cancer progression is still unclear. Nitric oxide impact on the MCF7 breast cancer line, before and after estrogen-induced apoptosis, was investigated in 3D culture systems using unique live-cell imaging methodologies.

View Article and Find Full Text PDF

Specific phenotypic subpopulations of cancer stem cells (CSCs) are responsible for tumor development, production of heterogeneous differentiated tumor mass, metastasis, and resistance to therapies. The development of therapeutic approaches based on targeting rare CSCs has been limited partially due to the lack of appropriate experimental models and measurement approaches. The current study presents new tools and methodologies based on a hydrogel microstructure array (HMA) for identification and multiplex analyses of CSCs.

View Article and Find Full Text PDF

Spectroscopic properties of cationic dye basic orange 21 (BO21) in solutions, in solids, and within leukocytes were examined. Results obtained with solutions indicate that influence of variables such as pH, viscosity, salt composition, and various proteins on the absorption spectrum of BO21 is negligible. However, in the presence of heparin, a blue shift (484-465 nm) is observed, which is attributed to the aggregation of BO21 on the polyanion.

View Article and Find Full Text PDF

In order to study cell-cell variation with respect to enzymatic activity, individual live cell analysis should be complemented by measurement of single cell content in a biomimetic environment on a cellular scale arrangement. This is a challenging endeavor due to the small volume of a single cell, the low number of target molecules and cell motility. Micro-arrayed donut-shaped chambers (DSCs) of femtoliter (fL), picoliter (pL), and nanoliter (nL) volumes have been developed and produced for the analysis of biochemical reaction at the molecular, cellular and multicellular levels, respectively.

View Article and Find Full Text PDF

Living cells are known to exhibit great morphological, functional, spatial and temporal heterogeneity. Hence, the study of cells in a bulk, whether this bulk is homogenous or heterogeneous, does not provide sufficiently detailed or interpretable results. An advantageous approach would rather be a comprehensive study of cell biological activity in single isolated living cells.

View Article and Find Full Text PDF

Nitric oxide (NO) is recognized as one of the major immune system agents involved in the pathogenesis and control of various diseases that may benefit from novel drug development, by exploiting NO signaling pathways and targets. This calls for detection of both intracellular levels of NO and expression of its synthesizing enzymes (NOS) in individual, intact, living cells. Such measurements are challenging, however, due to short half-life, low and fluctuating concentrations of NO, cellular heterogeneity, and inability to trace the same cells over time.

View Article and Find Full Text PDF

Background: The cryopreservation and thawing processes are known to induce many deleterious effects in cells and might be detrimental to several cell types. There is an inherent variability in cellular responses among cell types and within individual cells of a given population with regard to their ability to endure the freezing and thawing process. The aim of this study was to evaluate the fate of cryopreserved cells within an optical cryo apparatus, the individual-cell-based cryo-chip (i3C), by monitoring several basic cellular functional activities at the resolution of individual cells.

View Article and Find Full Text PDF

Multicellular spheroid models have been recognized as superior to monolayer cell cultures in antitumor drug screening, but their commercial adaptation in the pharmaceutical industry has been delayed, primarily due to technological limitations. The current study presents a new spheroid culture platform that addresses these technical restrictions. The new culturing device is based on a multiwell plate equipped with a glass bottom patterned with an array of UV adhesive microchambers.

View Article and Find Full Text PDF

Background: Cryopreservation is the only widely applicable method of storing vital cells for nearly unlimited periods of time. Successful cryopreservation is essential for reproductive medicine, stem cell research, cord blood storage and related biomedical areas. The methods currently used to retrieve a specific cell or a group of individual cells with specific biological properties after cryopreservation are quite complicated and inefficient.

View Article and Find Full Text PDF

Direct quantitative experimental investigations of the function of lymphocytes and other immune cells are challenging due to the cell mobility and the complexity of intercellular communications. In order to facilitate such investigations, an in vitro system is required that is noninvasive and provides kinetic data on cellular responses to challenges such as drug treatments. The present work reports the development of a disposable, inexpensive polymer-made device, the Polymer Live Cell Array (PLCA), for real-time, kinetic analysis of immune cells.

View Article and Find Full Text PDF

We present a method for the comparative analysis of parameter groups according to their correlation to disease. The theoretical basis of the proposed method is Information Theory and Nonparametric Statistics. Normalized mutual information is used as the measure of correlation between parameters, and statistical conclusions are based on ranking.

View Article and Find Full Text PDF

Objectives: Formal diagnostic modeling is an important line of modern biological and medical research. The construction of a formal diagnostic model consists of two stages: first, the estimation of correlation between model parameters and the disease under consideration; and second, the construction of a diagnostic decision rule using these correlation estimates. A serious drawback of current diagnostic models is the absence of a unified mathematical methodological approach to implementing these two stages.

View Article and Find Full Text PDF

The development of distant metastases is the major cause of death in breast cancer (BC). In many BC cases, metastases are present in patients with no metastasis-positive lymph nodes (LN). Hence, there is a need to improve prognosis by a better prediction of the nodal status and tumor spread.

View Article and Find Full Text PDF

Background: One of the major clinical problems in breast cancer detection is the relatively high incidence of occult lymph node metastases undetectable by standard procedures. Since the ascertainment of breast cancer stage determines the following treatment, such a "hypo-diagnosis" leads to inadequate therapy, and hence is detrimental for the outcome and survival of the patients. The purpose of our study was to investigate functional metabolic characteristics of living cells derived from metastatic and tumor-free lymph nodes of breast cancer (BC) patients.

View Article and Find Full Text PDF

Background: The Michaelis-Menten constants (K(m) and V(max)) operated by the Information Theory were employed for detection of breast cancer.

Methods: The rate of enzymatic hydrolysis of fluorescein diacetate (FDA) in live peripheral blood mononuclear cells (PBMC), derived from healthy subjects and breast cancer (BC) patients, was assessed by measuring the fluorescence intensity (FI) in individual cells under incubation with either the mitogen phytohemagglutinin (PHA) or with tumor tissue, as compared to control. The data were processed by the Information Theory to determine the parameters and test conditions, which can best discriminate between the different groups.

View Article and Find Full Text PDF

The Michaelis-Menten constants (K(m) and V(max)) operated by linear programming, were employed for detection of breast cancer. The rate of enzymatic hydrolysis of fluorescein diacetate (FDA) in living peripheral blood mononuclear cells (PBMC), derived from healthy subjects and breast cancer (BC) patients, was assessed by measuring the fluorescence intensity (FI) in individual cells under incubation with either the mitogen phytohemagglutinin (PHA) or with tumor tissue, as compared to control. The suggested model diagnoses three conditions: (1) the subject is diseased, (2) the diagnosis is uncertain, and (3) the subject is not diseased.

View Article and Find Full Text PDF

Reactive oxygen species (ROS) have recently been shown to be involved in multiple physiological responses through modulation of signaling pathways. Inappropriate production of these radicals, and their metabolites, leads to the development of various pathologies. Free radicals can induce both positive and negative effects in cells, and their metabolic pathways are very complex.

View Article and Find Full Text PDF

The importance of research involving non-adherent cell lines, primary cells and blood cells is generally undisputed. However, the task of investigating the complexity and heterogeneity of these cells calls for their long-run monitoring at a single-cell resolution. Such a capability is currently unavailable without having to use disruptive cell tethering.

View Article and Find Full Text PDF

A high throughput Microtiter plate Cell Retainer (MCR) has been developed to enable, for the first time, high-content, time-dependent analysis of the same single non-adherent and non-anchored cells in a large cell population, while bio-manipulating the cells. The identity of each cell in the investigated population is secured, even during bio-manipulation, by cell retention in a specially designed concave microlens, acting as a picoliter well (PW). The MCR technique combines micro-optical features and microtiter plate methodology.

View Article and Find Full Text PDF

Objective: Apoptosis is being increasingly regarded as a key component in the development and progression of atherosclerosis. Since it has become apparent that the immune system plays a predominant role in mediating atherogenesis, there has been a growing recognition that the evaluation of lymphocyte apoptosis may contribute to understanding a persistent altered immune and inflammatory response. The aim of the present study was to evaluate the apoptotic effect of lysophosphatidylcholine (LPC) on peripheral blood lymphocytes (PBL) derived from unstable angina (UA) patients, as compared to healthy donors.

View Article and Find Full Text PDF