Publications by authors named "Afnan Batubara"

The proposed study uses a special procedure to verify that an analyte assessment operation is sustainable and environmentally friendly. When the targeted analyte molecule (alogliptin drug, ALT) lacks chromophoric or fluorogenic groups, it cannot be analyzed without marking or structural amendment. The obeyed phenomenon (marking process) could be achieved via fluorescence probing or marking using tagging agents.

View Article and Find Full Text PDF

Background: Ritonavir was recently combined with nirmatrelvir in a new approved co-packaged medication form for the treatment of COVID-19. Quantitative analysis based on fluorescence spectroscopy measurement was extensively used for sensitive determination of compounds exhibited unique fluorescence features.

Objective: The main objective of this work was to develop higher sensitive cost effective spectrofluorometric method for selective determination of ritonavir in the presence of nirmatrelvir in pure form, pharmaceutical tablet as well as in spiked human plasma.

View Article and Find Full Text PDF

The environmentally friendly design of analytical methods is gaining interest in pharmaceutical analysis to reduce hazardous environmental impacts and improve safety and health conditions for analysts. The adaptation and integration of chemometrics in the development of environmentally friendly analytical methods is strongly recommended in the hope of promising benefits. Favipiravir and remdesivir have been included in the COVID-19 treatment guidelines panel of several countries.

View Article and Find Full Text PDF

A computationally-assisted and green spectrophotometric method has been developed for the determination of fostemsavir, a recently FDA-approved drug used in combination with antiretroviral drugs to treat multidrug-resistant HIV-1 infection. The method was developed using computational studies and solvent selection based on green chemistry principles. The density functional theory method was employed to identify bromophenol blue as the preferred acid dye for efficient extraction of fostemsavir.

View Article and Find Full Text PDF

Favipiravir and remdesivir have been included in the COVID-19 treatment guidelines panel of several countries. The main objective of the current work is to develop the first validated green spectrophotometric methods for the determination of favipiravir and remdesivir in spiked human plasma. The UV absorption spectra of favipiravir and remdesivir have shown some overlap, making simultaneous determination difficult.

View Article and Find Full Text PDF

Favipiravir and aspirin are co-administered during COVID-19 treatment to prevent venous thromboembolism. For the first time, a spectrofluorometric method has been developed for the simultaneous analysis of favipiravir and aspirin in plasma matrix at nano-gram detection limits. The native fluorescence spectra of favipiravir and aspirin in ethanol showed overlapping emission spectra at 423 nm and 403 nm, respectively, after excitation at 368 nm and 298 nm, respectively.

View Article and Find Full Text PDF

Type 2 diabetes can be cured by using tradjenta (also known as Linagliptin), a new therapeutic drug that is an inhibitor of the dipeptidyl peptidase-4 enzyme. Tradjenta is administered orally alone or in combination with metiguanide or empagliflozin. An easy and specific fluorimetric analysis of Tradjenta was developed and demonstrated in the present investigation.

View Article and Find Full Text PDF

Quantitative analysis of pharmaceutical compounds up to Nano gram levels is highly recommended to introduce feasible and sensitive tool for determination of the compounds in the pharmaceutical and biological samples. Nirmatrelvir plus ritonavir was recently approved in the US, the UK and Europe as a new co-packaged dosage form for the treatment of COVID-19. The objective of this work was to develop a more sensitive TLC method based on using β-cyclodextrin as a chiral selector additive in the mobile phase for simultaneous determination of nirmatrelvir and ritonavir in pure form, pharmaceutical formulation and spiked human plasma.

View Article and Find Full Text PDF

The mixture of hyoscine N-butyl bromide (HBB) and ketoprofen (KTP) is commonly used for the handling of abdominal spasms and pain relief. There are two challenges that restrict the simultaneous assessment of HBB and KTP in biological fluids and pharmaceuticals. The first issue is the difficulty of elution of HBB and the second one is the presence of KTP as a racemic mixture in all pharmaceutical formulations, which obscures its appearance as a single peak.

View Article and Find Full Text PDF

Remdesivir and apixaban have been included in the treatment guidelines of several countries for severe COVID-19 infections. To date, no analytical method has been developed for the determination of remdesivir and apixaban in plasma matrix. The main objective of this work was to develop a highly sensitive, green-adapted spectrofluorometric method for the determination of remdesivir and apixaban at the Nanoscale.

View Article and Find Full Text PDF

The greening of analytical methods has gained interest in the quantitative analysis field to reduce environmental impact and improve safety health conditions for analysts. Nirmatrelvir plus ritonavir is a new FDA approved co-packaged medication developed for the treatment of COVID-19. The aim of this research was to develop green fitted HPLC method using pre experimental computational testing of different stationary phases as well as selecting mobile phase regarding to green analytical chemistry principles.

View Article and Find Full Text PDF

Promising inhibitory activities of the parasite multiplication were obtained upon evaluation of antimalarial activities of new pyrazolylpyrazoline derivatives against infected mice. Further evaluation of and against chloroquine-resistant strain (RKL9) of showed higher potency than chloroquine. antileishmanial activity testing against promastigote and amastigote forms indicated that , and possessed promising activity compared to miltefosine and amphotericin B deoxycholate.

View Article and Find Full Text PDF

Bacterial resistance is spreading in an alarming manner, outpacing the rate of development of new antibacterial agents and surging the need for effective alternatives. Prenylated flavonoids are a promising class of natural antibiotics with reported activity against a wide range of resistant pathogens. Here, a large library of natural flavonoids (1718 structures) was virtually screened for potential candidates inhibiting the B-subunit of gyrase (Gyr-B).

View Article and Find Full Text PDF

oil, commonly known as black seed oil (BSO), is a well-known Mediterranean food, and its consumption is associated with beneficial effects on human health. A large number of BSO's therapeutic properties is attributed to its pharmacologically active compound, thymoquinone (TQ), which inhibits cell proliferation and induces apoptosis by targeting several epigenetic players, including the ubiquitin-like, containing plant homeodomain (PHD) and an interesting new gene, RING finger domains 1 (UHRF1), and its partners, DNA methyltransferase 1 (DNMT1) and histone deacetylase 1 (HDAC1). This study was designed to compare the effects of locally sourced BSO with those of pure TQ on the expression of the epigenetic complex UHRF1/DNMT1/HDAC1 and the related events in several cancer cells.

View Article and Find Full Text PDF

Rationale: 5,6-Dimethylxanthenone-4-acetic acid (DMXAA) is a low molecular weight drug of the flavonoid group, which has an anti-vascular effect in tumours causing endothelial cell apoptosis and activation of cytokines. Flavonoid-based compounds have been reported to lead to an upregulation in the expression of lysophosphatidylcholines (LPC)-type lipids in solid tumours. A study employing TLC/MALDI-MS and MALDI-MS imaging to examine LS174T colorectal adenocarcinoma xenografts following administration of DMXAA has been conducted into this effect.

View Article and Find Full Text PDF

Pharmacodynamics and toxicodynamics are the study of the biochemical and physiological effects of therapeutic agents and toxicants and their mechanisms of action. MALDI-MS imaging offers great potential for the study of pharmaco/toxicodynamic responses in tissue owing is its ability to study multiple biomarkers simultaneously in a label-free manner. Here, existing examples of such studies examining anticancer drugs and topically applied treatments are described.

View Article and Find Full Text PDF