Publications by authors named "Afia Akram"

A number of studies have reported frequent incidence of c-kit gene mutations in association with core binding factor acute myeloid leukemia (CBF-AML). These genetic changes have become important prognostic predictors in patients with abnormal karyotype. Aim of this study was the detection of nucleotide alterations in newly diagnosed acute myeloid leukemia patients for three exons of c-kit gene, including cytogenetically normal patients.

View Article and Find Full Text PDF

Background: Acute myeloid leukemia (AML) is a bone marrow malignancy having multiple molecular pathways driving its progress. In recent years, the main causes of AML considered all over the world are genetic variations in cancerous cells. The RUNX1 and FLT3 genes are necessary for the normal hematopoiesis and differentiation process of hematopoietic stem cells into mature blood cells, therefore they are the most common targets for point mutations resulting in AML.

View Article and Find Full Text PDF

Rat sarcoma gene (RAS) holds great importance in pathogenesis of acute myeloid leukemia (AML). The activated mutations in Neuroblastoma rat sarcoma viral oncogene homolog (NRAS) and Kirsten rat sarcoma viral oncogene homolog (KRAS) confers proliferative and survival signals, deliberating numerous effects on overall survival and progression free survival in AML patients. In this study thirty one (31) blood samples of adult newly diagnosed AML patients were collected to identify possible incidence of mutations through amplification of KRAS (exon 1 and 2) and NRAS gene (exon 1 and 2) using polymerase chain reaction (PCR).

View Article and Find Full Text PDF

Pomegranate peels (PPW) as municipal waste is inexpensive biomass that could be a renewable source of sugars particularly rich in hemicellulosic contents. The subsequent conversion of available sugars in PPW can provide prospective strategy for cost-effective bioenergy production. In this study, an experimental setup based on CCD was implemented with the aim of bioconversion of biomass into bioethanol.

View Article and Find Full Text PDF

Objective: BCR-ABL fusion oncogene is the hallmark of chronic myeloid leukemia (CML), causing genomic instability which leads to accumulation of mutations in BCR-ABL as well as other genes. BCR-ABL mutations are the cause of tyrosine kinase inhibitors (TKIs) resistance in CML. Recently, compound BCR-ABL mutations have been reported to resist all FDA approved TKIs.

View Article and Find Full Text PDF

The most frequently reported genetic aberration among polycythemia vera (PV) patients is a gain of function mutation V617F in exon 14 of Janus kinase 2 (JAK2) gene. However in many investigations, V617F negative PV patients have been reported to harbor mutations in JAK 2 exon 12. We investigated 24 patients with PV (diagnosed following 2016 WHO guidelines) to detect V617F mutation through allele specific PCR.

View Article and Find Full Text PDF

BCR-ABL kinase domain (K) mutations are well known for causing resistance against tyrosine kinase inhibitors (TKIs) and disease progression in chronic myeloid leukemia (CML). In recent years, compound BCR-ABL mutations have emerged as a new threat to CML patients by causing higher degrees of resistance involving multiple TKIs, including ponatinib. However, there are limited reports about association of compound BCR-ABL mutations with disease progression in imatinib (IM) sensitive CML patients.

View Article and Find Full Text PDF

Background: Fusion oncogenes (FOs) resulting from chromosomal abnormalities have an important role in leukemogenesis in pediatric B cell acute lymphoblastic leukemia (ALL). The most common FOs are BCR-ABL, MLL-AF4, ETV6-RUNX1, and TCF3-PBX1, all of which have important prognostic and drug selection implications. Moreover, frequencies of FOs have ethnic variations.

View Article and Find Full Text PDF

Background And Objectives: Chromosomal abnormalities play an important role in genesis of acute lymphoblastic leukemia (ALL) and have prognostic implications. Five major risk stratifying fusion genes in ALL are BCR-ABL, MLL-AF4, ETV6-RUNX11, E2A-PBX1 and SIL-TAL1. This work aimed to detect common chromosomal translocations and associated fusion oncogenes in adult ALL patients and study their relationship with clinical features and treatment outcome.

View Article and Find Full Text PDF

Inheritance of the ε4 allele of apolipoprotein E (ApoE) is the only confirmed and consistently replicated risk factor for late onset Alzheimer's disease (AD). ApoE is also a key ligand for low-density lipoprotein (LDL) receptor-related protein (LRP), a major neuronal low-density lipoprotein receptor. Despite the considerable converging evidence that implicates ApoE and LRP in the pathogenesis of AD, the precise mechanism by which ApoE and LRP modulate the risk for AD remains elusive.

View Article and Find Full Text PDF

Background: Cholesterol content of cerebral membranes is tightly regulated by elaborate mechanisms that balance the level of cholesterol synthesis, uptake and efflux. Among the conventional regulatory elements, a recent research focus has been nuclear receptors, a superfamily of ligand-activated transcription factors providing an indispensable regulatory framework in controlling cholesterol metabolism pathway genes. The mechanism of transcriptional regulation by nuclear receptors such as LXRs involves formation of heterodimers with RXRs.

View Article and Find Full Text PDF

To gain insight into ATP-binding cassette transporter A1 (ABCA1) function and its potential role in AD pathology, we analyzed the expression of the cholesterol transporter ABCA1 in postmortem hippocampus from persons at different stages of dementia and AD associated neuropathology relative to cognitively intact normal donors by quantitative polymerase chain reaction (qPCR) and Western blot. In this study clinical dementia rating (CDR) scores were used as a measure of dementia severity, whereas, Braak neuropathological staging and neuritic plaque density were used as an index of the neuropathological progression of AD. Correlation analysis showed that ABCA1 mRNA expression was significantly elevated at the earliest recognizable stage of dementia compared to persons with intact cognition.

View Article and Find Full Text PDF

The Alzheimer disease (AD) amyloid protein precursor (APP) can bind the FE65 adaptor protein and this complex can regulate gene expression. We carried out yeast two-hybrid studies with a PTB domain of FE65, focusing on those genes that might be involved in nuclear signaling, and identified and validated Teashirt proteins as FE65 interacting proteins in neurons. Using reporter systems, we observed that FE65 could simultaneously recruit SET, a component of the inhibitor of acetyl transferase, and Teashirt, which in turn recruited histone deacetylases, to produce a powerful gene-silencing complex.

View Article and Find Full Text PDF

The loss of presynaptic markers is thought to represent a strong pathologic correlate of cognitive decline in Alzheimer's disease (AD). Spinophilin is a postsynaptic marker mainly located to the heads of dendritic spines. We assessed total numbers of spinophilin-immunoreactive puncta in the CA1 and CA3 fields of hippocampus and area 9 in 18 elderly individuals with various degrees of cognitive decline.

View Article and Find Full Text PDF