Publications by authors named "Afford S"

Background: Normothermic machine perfusion of donor livers has become standard practice in the field of transplantation, allowing the assessment of organs and safe extension of preservation times. Alongside its clinical uses, there has been expanding interest in extended normothermic machine perfusion (eNMP) of livers as a potential vehicle for medical research. Reproducible extended normothermic machine perfusion has remained elusive due to its increased complexity and monitoring requirements.

View Article and Find Full Text PDF

Normothermic machine perfusion (NMP) enables pretransplant assessment of high-risk donor livers. The VITTAL trial demonstrated that 71% of the currently discarded organs could be transplanted with 100% 90-day patient and graft survivals. Here, we report secondary end points and 5-year outcomes of this prospective, open-label, phase 2 adaptive single-arm study.

View Article and Find Full Text PDF

Extended duration of normothermic machine perfusion (NMP) provides opportunities to resuscitate suboptimal donor livers. This intervention requires adequate oxygen delivery typically provided by a blood-based perfusion solution. Methaemoglobin (MetHb) results from the oxidation of iron within haemoglobin and represents a serious problem in perfusions lasting > 24 h.

View Article and Find Full Text PDF

Background: Ex vivo normothermic machine liver perfusion (NMLP) involves artificial cannulation of vessels and generation of flow pressures. This could lead to shear stress-induced endothelial damage, predisposing to vascular complications, or improved preservation of donor artery quality. This study aims to assess the spatial donor hepatic artery (HA) endothelial quality downstream of the cannulation site after end-ischaemic NMLP.

View Article and Find Full Text PDF

Normothermic machine perfusion (NMP) allows objective assessment of donor liver transplantability. Several viability evaluation protocols have been established, consisting of parameters such as perfusate lactate clearance, pH, transaminase levels, and the production and composition of bile. The aims of this study were to assess 3 such protocols, namely, those introduced by the teams from Birmingham (BP), Cambridge (CP), and Groningen (GP), using a cohort of high-risk marginal livers that had initially been deemed unsuitable for transplantation and to introduce the concept of the viability assessment sensitivity and specificity.

View Article and Find Full Text PDF
Article Synopsis
  • * Ischaemia reperfusion injury, a major issue in organ transplants, results from blood flow loss and restoration, causing inflammation that can lead to organ failure.
  • * Machine perfusion techniques (both normothermic and hypothermic) have emerged as crucial methods for improving organ preservation and enhancing the success rates of transplants from suboptimal organs.
View Article and Find Full Text PDF

donor liver machine perfusion is a promising tool to assess organ viability prior to transplantation and platform to investigate novel therapeutic interventions. However, the wide variability in donor and graft characteristics between individual donor livers limits the comparability of results. We investigated the hypothesis that the development of a split liver machine perfusion protocol provides the ideal comparative controls in the investigation of machine perfusion techniques and therapeutic interventions, thus leading to more comparable results.

View Article and Find Full Text PDF

Pre-clinical research with multi-potent adult progenitor cells (MAPC® cells, Multistem, Athersys Inc., Cleveland, Ohio) suggests their potential as an anti-inflammatory and immunomodulatory therapy in organ transplantation. Normothermic machine perfusion of the liver (NMP-L) has been proposed as a way of introducing therapeutic agents into the donor organ.

View Article and Find Full Text PDF

There is a limited access to liver transplantation, however, many organs are discarded based on subjective assessment only. Here we report the VITTAL clinical trial (ClinicalTrials.gov number NCT02740608) outcomes, using normothermic machine perfusion (NMP) to objectively assess livers discarded by all UK centres meeting specific high-risk criteria.

View Article and Find Full Text PDF

Liver ischaemia-reperfusion injury (IRI) is an intrinsic part of the transplantation process and damages the parenchymal cells of the liver including hepatocytes, endothelial cells and cholangiocytes. Many biomarkers of IRI have been described over the past two decades that have attempted to quantify the extent of IRI involving different hepatic cellular compartments, with the aim to allow clinicians to predict the suitability of donor livers for transplantation. The advent of machine perfusion has added an additional layer of complexity to this field and has forced researchers to re-evaluate the utility of IRI biomarkers in different machine preservation techniques.

View Article and Find Full Text PDF

Aberrant Notch and Wnt signaling are known drivers of cholangiocarcinoma (CCA), but the underlying factors that initiate and maintain these pathways are not known. Here, we show that the proline-rich homeodomain protein/hematopoietically expressed homeobox (PRH/HHEX) transcription factor forms a positive transcriptional feedback loop with Notch3 that is critical in CCA. PRH/HHEX expression is elevated in CCA, and depletion of PRH reduces CCA tumor growth in a xenograft model.

View Article and Find Full Text PDF

Introduction: The combination of hypothermic and normothermic machine perfusion (HMP+NMP) of the liver provides individual benefits of both techniques, improving the rescue of marginal organs. The aim of this study was to investigate the effect on the bioenergetic status and the oxidative-mediated tissue injury of an uninterrupted combined protocol of HMP+NMP using a single haemoglobin-based oxygen carrier (HBOC)-based perfusate.

Methods: Ten discarded human donor livers had either 2 hours of dual hypothermic oxygenated perfusion (D-HOPE) with sequential controlled rewarming (COR) and then NMP using the HBOC-based perfusate uninterruptedly (cold-to-warm group); or 2 hours of hypothermic oxygenated perfusion (HOPE) with an oxygen carrier-free perfusate, followed by perfusate exchange and then NMP with an HBOC-based perfusate.

View Article and Find Full Text PDF

Liver transplantation is an effective intervention for end-stage liver disease, fulminant hepatic failure, and early hepatocellular carcinoma. Yet, there is marked patient-to-patient variation in liver transplantation outcomes. This calls for novel diagnostics to enable rational deployment of donor livers.

View Article and Find Full Text PDF
Article Synopsis
  • There are currently no effective treatments for autoimmune biliary diseases, making it essential to understand their underlying immunopathology.
  • The study reveals that biliary epithelial cells (BEC) respond to gut microbes and inflammatory cytokines, leading to the recruitment of specific T cells (like Th17) that influence immune responses in the liver.
  • Research indicates a feedback loop where Th17 cells not only promote the survival and polarization of CD4 T cells but also enhance the proliferation of BEC, suggesting a collaborative role in liver health and regeneration during inflammation.
View Article and Find Full Text PDF

Strategies to increase the use of steatotic donor livers are required to tackle the mortality on the transplant waiting list. We aimed to test the efficacy of pharmacological enhancement of the lipid metabolism of human livers during ex situ normothermic machine perfusion to promote defatting and improve the functional recovery of the organs. Because of steatosis, 10 livers were discarded and were allocated either to a defatting group that had the perfusate supplemented with a combination of drugs to enhance lipid metabolism or to a control group that received perfusion fluid with vehicle only.

View Article and Find Full Text PDF

Longstanding research describes the mechanisms whereby the restoration of blood flow and reoxygenation (reperfusion) aggravates the ischaemic injury caused by a period of anoxia to a donor liver. This phenomenon, called ischaemia-reperfusion injury (IRI), leads to parenchymal cell death, microcirculatory failure, and inflammatory immune response. Clinically, IRI is the main factor responsible for the occurrence of posttransplant graft dysfunction and ischaemic-type biliary lesions.

View Article and Find Full Text PDF

Aim: To review the clinical impact of machine perfusion (MP) of the liver on biliary complications post-transplantation, particularly ischaemic-type biliary lesions (ITBL).

Methods: This systematic review was performed in accordance with the Preferred Reporting Systematic Reviews and Meta-Analysis (PRISMA) protocol. The following databases were searched: PubMed, MEDLINE and Scopus.

View Article and Find Full Text PDF

Increased use of high-risk allografts is critical to meet the demand for liver transplantation. We aimed to identify criteria predicting viability of organs, currently declined for clinical transplantation, using functional assessment during normothermic machine perfusion (NMP). Twelve discarded human livers were subjected to NMP following static cold storage.

View Article and Find Full Text PDF

Cholangiocarcinoma is a disease with a poor prognosis and increasing incidence and hence there is a pressing unmet clinical need for new adjuvant treatments. Protein kinase CK2 (previously casein kinase II) is a ubiquitously expressed protein kinase that is up-regulated in multiple cancer cell types. The inhibition of CK2 activity using CX-4945 (Silmitasertib) has been proposed as a novel treatment in multiple disease settings including cholangiocarcinoma.

View Article and Find Full Text PDF