Publications by authors named "Affeld K"

Objective: In spite of the progress in antimicrobial and surgical therapy, infective endocarditis (IE) is still associated with a high morbidity and mortality. IE is characterized by bacterial biofilms of the endocardium, especially of the aortic and mitral valve leading to their destruction. About one quarter of patients with formal surgery indication cannot undergo surgery.

View Article and Find Full Text PDF

Colonization of in-dwelling catheters by microbial biofilms is a major concern in patient health eventually leading to catheter-related blood stream infections. Biofilms are less susceptible to standard antibiotic therapies that are effective against planktonic bacteria. Standard procedure for the detection of microorganisms on the catheter tip is culture.

View Article and Find Full Text PDF

In rotary blood pump recipients with low blood pressure pulsatility, current oscillometric methods to measure blood pressure are not applicable. The aim of this study was to use ultrasonic Doppler flow measurements to determine blood pressure in this patient population noninvasively. In 28 rotary blood pump recipients, blood pressure was measured three times with the developed Doppler method and compared to the invasive arterial line (n = 15) or to the oscillometric Terumo Elemano BP monitor (n = 13).

View Article and Find Full Text PDF

Introduction:: Continuous-flow left ventricular assist devices have evolved from short-time therapy into permanent or so-called destination therapy. One complication in long-term usage is bleeding, which is presumably attributed to shear-induced interference of left ventricular assist devices with the coagulation system.

Methods:: The influence of dynamic shear stresses on primary hemostasis by single or multiple passes through left ventricular assist devices was investigated.

View Article and Find Full Text PDF

Background: The implantation of rotary blood pumps as ventricular assist devices (VADs) has become a viable therapy for quite a number of patients with end-stage heart failure. However, these rotary blood pumps cause adverse events that are related to blood trauma. It is currently believed that turbulence in the pump flow plays a significant role.

View Article and Find Full Text PDF

Left ventricular assist devices (LVADs) have become a standard therapy for patients with severe heart failure. As low blood trauma in LVADs is important for a good clinical outcome, the assessment of the fluid loads inside the pump is critical. More specifically, the flow features on the surfaces where the interaction between blood and artificial material happens is of great importance.

View Article and Find Full Text PDF

Aim: In current rotary blood pumps, complications related to blood trauma due to shear stresses are still frequently observed clinically. Reducing the rotor tip speed might decrease blood trauma. Therefore, the aim of this project was to design a two-stage rotary blood pump leading to lower shear stresses.

View Article and Find Full Text PDF

Implants inside the cardiovascular system are subjected to blood flow. Platelet deposition usually takes place, eventually leading to thrombus formation. Tests must be performed in order to select a suitable biomaterial, but no generally accepted test method exists for biomaterials in contact with blood.

View Article and Find Full Text PDF

Implantable left ventricular assist devices (LVADs) became the therapy of choice in treating end-stage heart failure. Although survival improved substantially and is similar in currently clinically implanted LVADs HeartMate II (HM II) and HeartWare HVAD, complications related to blood trauma are frequently observed. The aim of this study was to compare these two pumps regarding their potential blood trauma employing computational fluid dynamics.

View Article and Find Full Text PDF

Assemblages of introduced taxa provide an opportunity to understand how abiotic and biotic factors shape habitat use by coexisting species. We tested hypotheses about habitat selection by two deer species recently introduced to New Zealand's temperate rainforests. We hypothesised that, due to different thermoregulatory abilities, rusa deer (Cervus timorensis; a tropical species) would prefer warmer locations in winter than red deer (Cervus elaphus scoticus; a temperate species).

View Article and Find Full Text PDF

Exit-site infections remain one of the main complications for percutaneous devices, such as catheters for peritoneal dialysis or drivelines for ventricular assist devices. Many efforts have been made to create a biological seal, yet without long-term success. This study investigates a new kind of percutaneous device which is coated with an extricable polymeric membrane.

View Article and Find Full Text PDF

Hunterian ligation affecting hemodynamics in vessels was proposed to avoid rebleeding in a case of a fenestrated basilar artery aneurysm after incomplete coil occlusion. We studied the hemodynamics in vitro to predict the hemodynamic changes near the aneurysm remnant caused by Hunterian ligation. A transparent model was fabricated based on three-dimensional rotational angiography imaging.

View Article and Find Full Text PDF

Platelet deposition to collagen-coated surface under low shear conditions was investigated using an experimental model. The flow chamber was created by combining a stationary and a rotational glass plates spaced 50 μm apart. Blood filled into this space was subjected to a simple Couette flow.

View Article and Find Full Text PDF

Percutaneous devices enable the transfer of mass, energy and forces through the skin. There is a wide clinical need for this, which is not likely to decrease or disappear. The emerging new artificial organs, such as wearable kidneys or lungs, will be in increased demand in the future.

View Article and Find Full Text PDF

Background: Cerebral arterial vasospasm leads to delayed cerebral ischemia and constitutes the major delayed complication following aneurysmal subarachnoid hemorrhage. Cerebral vasospasm can be reduced by increased blood clearance from the subarachnoid space. Clinical pilot studies allow the hypothesis that the clearance of subarachnoid blood is facilitated by means of head shaking.

View Article and Find Full Text PDF

Flow fields are one of the key factors associated with the life threatening formation of thrombi in artificial organs. Therefore, knowledge of flow field is crucial for the design and optimization of a long-term blood pump performance. The blood chamber flow of a novel counterpulsation heart assist device (CPD) has been investigated using laser Doppler velocimetry (LDV), particle image velocimetry (PIV), and near-wall PIV (wall-PIV).

View Article and Find Full Text PDF

The objective of this study is to assess the effect of a purge flow on valves of pulsatile heart-assist devices. Clinical applications of these devices are still limited because of frequent thromboembolic complications. These complications often originate at the valves and the unavoidable flow separation regions that are found behind the leaflets.

View Article and Find Full Text PDF

Clinical records show ever increasing functional times of rotary blood pumps implanted in patients. With longer functional time, the problem of driveline infection is becoming more urgent. No material or scaffold has been found, which allows a permanent and stable ingrowth of skin cells that would prevent (pathogenic) germs entering the body.

View Article and Find Full Text PDF

Aims: Blood flow, vascular shape and size and local remodeling of the vascular wall are linked through wall shear stress (WSS) signaling. Inter-individual comparison of shape and WSS is hampered by large differences in size of flow and shape. We performed non-dimensional modeling to discriminate different types of coronary artery remodeling based on WSS patterns and vessel morphology.

View Article and Find Full Text PDF

Aims: Wall shear stress (WSS) may induce local remodeling of the vascular wall and the WSS pattern in turn depends on vascular geometry. We aimed to elucidate the impact of side-branches on local WSS.

Methods And Results: Steady numerical flow simulation studies were performed in three-dimensional reconstructed right coronary artery (RCA) trees.

View Article and Find Full Text PDF

Background And Purpose: Coil embolization procedures change the flow conditions in the cerebral aneurysm and, therefore, in the near-wall region. Knowledge of these flow changes may be helpful to optimize therapy. The goal of this study was to investigate the effect of the coil-packing attenuation on the near-wall flow and its variability due to differences in the coil structure.

View Article and Find Full Text PDF