Publications by authors named "Afef Ouelhazi"

Objective: Orientation selectivity is an emergent property of visual neurons across species with columnar and noncolumnar organization of the visual cortex. The emergence of orientation selectivity is more established in columnar cortical areas than in noncolumnar ones. Thus, how does orientation selectivity emerge in noncolumnar cortical areas after an adaptation protocol? Adaptation refers to the constant presentation of a nonoptimal stimulus (adapter) to a neuron under observation for a specific time.

View Article and Find Full Text PDF

Adult primary visual cortex features well demonstrated orientation selectivities. However, the imposition of a non-preferred stimulus for many minutes (adaptation) or the application of an antidepressant drug, such as ketamine, shifts the peak of the tuning curve, assigning a novel selectivity to a neuron. The effect of ketamine on V1 neural circuitry is not yet ascertained.

View Article and Find Full Text PDF

For medical and fundamental reasons, we need to understand adult brain plasticity at several levels: structural, physiological, and behavioral. Historically, brain plasticity has been mostly investigated by weakening or removing sensory inputs. The visual system has been extensively used because diminishing visual inputs, i.

View Article and Find Full Text PDF

Neuron orientation selectivity, otherwise known as the ability to respond optimally to a preferred orientation, has been extensively described in both primary and secondary visual cortices. This orientation selectivity, conserved through all cortical layers of a given column, is the primary basis for cortical organization and functional network emergence. While this selectivity is programmed and acquired since critical period, it has always been believed that in a mature brain, neurons' inherent functional features could not be changed.

View Article and Find Full Text PDF

Gamma oscillations are ubiquitous in brain and are believed to be inevitable for information processing in brain. Here, we report that distinct bands (low, 30-40Hz and high gamma, 60-80Hz) of stimulus-triggered gamma oscillations are systematically linked to the orientation selectivity index (OSI) of neurons in the cat primary visual cortex. The gamma-power is high for the highly selective neurons in the low-gamma band, whereas it is high for the broadly selective neurons in the high-gamma band.

View Article and Find Full Text PDF