Background: Stroke remains a leading cause of death and disability worldwide, with African populations bearing a disproportionately high burden due to limited healthcare infrastructure. Early prediction and intervention are critical to reducing stroke outcomes. This study developed and evaluated a stroke prediction system using Gated Recurrent Units (GRU), a variant of Recurrent Neural Networks (RNN), leveraging the Afrocentric Stroke Investigative Research and Education Network (SIREN) dataset.
View Article and Find Full Text PDF