Publications by authors named "Afeesh Rajan Unnithan"

This study reports results of a mechanical platform-based screening assay (MICA) to evaluate the remote activation of mechanosensitive ion channels. Here, we studied ERK pathway activation and the elevation in intracellular Ca levels in response to the MICA application using the Luciferase assay and Fluo-8AM assay, respectively. Functionalised magnetic nanoparticles (MNPs) targeting membrane-bound integrins and mechanosensitive TREK1 ion channels were studied with HEK293 cell lines under MICA application.

View Article and Find Full Text PDF

In order to meet the unmet medical needs for effective cancer treatment, multifunctional nanocarriers based on iron oxide nanoparticles hold tremendous promise. Here we report a superparamagnetic iron oxide nanoparticles based hexa-functional nanosystem for synergistic cancer theranostic applications by offering active tumour targeting, accumulation and complementary imaging capability by combining magnetic resonance imaging as well as near-infrared fluorescence, magnetophotothermia and chemotherapy. The uniquely designed nanosystem exhibited a paramount increase in the antitumour efficacy through the simultaneous application of multiple thermal effects called magnetophotothermia, which outweighed the therapeutic efficacy of the current thermo-chemo therapies or stand-alone therapies.

View Article and Find Full Text PDF

Nitinol or NiTi alloys are well-known as an attractive biomedical material due to their unique properties such as the shape memory effect, super-elasticity and biocompatibility. These characteristics enable them to be best candidates for implant materials such as stent. One of the major factors that strongly affect the performance of nitinol stent is its unique surface properties.

View Article and Find Full Text PDF

The higher rate of soft tissue impairment due to lumpectomy or other trauma greatly requires the restoration of the irreversibly lost subcutaneous adipose tissues. The nanofibers fabricated by conventional electrospinning provide only a superficial porous structure due to its sheet like 2D structure and thereby hinder the cell infiltration and differentiation throughout the scaffolds. Thus we developed a novel electrospun 3D membrane using the zwitterionic poly (carboxybetaine-co-methyl methacrylate) co-polymer (CMMA) through electrostatic repulsion based electrospinning for soft tissue engineering.

View Article and Find Full Text PDF

We prepared Janus microspheres based on sodium alginate for the encapsulation of mesenchymal stem cells (MSC) in one compartment and iron oxide nanoparticles (IONP) or a drug in the second compartment. 4% percent sodium alginate solution was allowed to pass through a septum-theta capillary device and react with 2.5% calcium chloride to allow crosslinking to occur in the solution, forming calcium alginate Janus microspheres.

View Article and Find Full Text PDF

Cellulose I and II polymorphs were isolated from Capsosiphon fulvescens (CF) using the conventional method of extraction and direct mercerization of raw sample, respectively. The morphological and structural differences between the isolated polymorphs were studied by FTIR, FESEM and XRD. Direct mercerization of raw CF yielded the transformation of highly crystalline cellulose I (81.

View Article and Find Full Text PDF

Through exhaustive extraction via successive alkali and bleaching treatments cellulose was isolated from lettuce. The isolated cellulose was hydrolyzed using 64wt% HSO at 55°C under constant stirring for 1h to obtain cellulose nanocrystals (CNCs). Characterizations such as SEM, TEM, FTIR, TGA and XRD were done in order to determine differences in the physico-chemical characteristics of cellulose after each treatment step.

View Article and Find Full Text PDF

We report for the first time a polycaprolactone-human serum albumin (PCL-HSA) membrane with bimodal structures comprised of spider-web-like nano-nets and conventional fibers via facile electro-spinning/netting (ESN) technique. Such unique controllable morphology was developed by electrospinning the blend solution of PCL (8wt% in HFIP 1,1,1,3,3,3,-Hexafluoro-2-propanol) and HSA (10wt% deionized water). The phase separation during electrospinning caused the formation of bimodal structure.

View Article and Find Full Text PDF

A new paradigm in cancer theranostics is enabled by safe multifunctional nanoplatform that can be applied for therapeutic functions together with imaging capabilities. Herein, we develop a multifunctional nanocomposite consisting of Graphene Oxide-Iron Oxide -Doxorubicin (GO-IO-DOX) as a theranostic cancer platform. The smart magnetic nanoplatform acts both as a hyperthermic agent that delivers heat when an alternating magnetic field is applied and a chemotherapeutic agent in a cancer environment by providing a pH-dependent drug release to administer a synergistic anticancer treatment with an enhanced T2 contrast for MRI.

View Article and Find Full Text PDF

Multifunctional magnetic nanoparticles have gained ample attention in the field of nanomedicine in recent years. Here, novel superparamagnetic core-shell manganese ferrite nanoparticles (MFNP)-encapsulated mesoporous silica nanoparticles (MSMFNPs) loaded with anticancer drug doxorubicin (DOX) for the combined application of hyperthermia and chemotherapy were developed and tested in vitro. Our results indicate that DOX-MSMFNPs achieved a favorable hyperthermic response in an alternating magnetic field in addition to cancer cell-specific cationic DOX release due to the cleavage of amide bonds under acidic pH, and synergistically contributed towards an enhanced tumoricidal effect.

View Article and Find Full Text PDF

Unlabelled: The study describes the design and synthesis of an implantable smart magnetic nanofiber device for endoscopic hyperthermia treatment and tumor-triggered controlled drug release. This device is achieved using a two-component smart nanofiber matrix from monodisperse iron oxide nanoparticles (IONPs) as well as bortezomib (BTZ), a chemotherapeutic drug. The IONP-incorporated nanofiber matrix was developed by electrospinning a biocompatible and bioresorbable polymer, poly (d,l-lactide-co-glycolide) (PLGA), and tumor-triggered anticancer drug delivery is realized by exploiting mussel-inspired surface functionalization using 2-(3,4-dihydroxyphenyl)ethylamine (dopamine) to conjugate the borate-containing BTZ anticancer drug through a catechol metal binding in a pH-sensitive manner.

View Article and Find Full Text PDF

We report the versatile design of a smart nanoplatform for thermo-chemotherapy treatment of cancer. For the first time in the literature, our design takes advantage of the outstanding properties of mussel-inspired multiple catecholic groups - presenting a unique copolymer poly(2-hydroxyethyl methacrylate-co-dopamine methacrylamide) p(HEMA-co-DMA) to surface functionalize the superparamagnetic iron oxide nanoparticles as well as to conjugate borate containing anticancer drug bortezomib (BTZ) in a pH-dependent manner for the synergistic anticancer treatment. The unique multiple anchoring groups can be used to substantially improve the affinity of the ligands to the surfaces of the nanoparticles to form ultrastable iron oxide nanoparticles with control over their hydrodynamic diameter and interfacial chemistry.

View Article and Find Full Text PDF

Wound dressing is a very important factor in the process of wound healing as proper wound care can accelerate the recovery of the wound. In this study, zein nanofibrous mats with fiber diameters around 350-500 nm were prepared by electrospinning and silver (Ag) nanoparticles around 20 nm were concurrently synthesized in situ into the mats. The electrospun nanofibers were characterized by Field Emission-Scanning Electron Microscopy (FE-SEM), Transmission Electron Microscopy (TEM), Fourier Transform Infrared Spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) analysis.

View Article and Find Full Text PDF

Electrospun nanofibers that contain silver nanoparticles (AgNPs) have a strong antibacterial activity that is beneficial to wound healing. However, most of the literature available on the bactericidal effects of this material is based on the use of AgNPs with uncontrolled size, shape, surface properties, and degree of aggregation. In this study, we report the first versatile synthesis of novel catechol moieties presenting electrospun nanofibers functionalized with AgNPs through catechol redox chemistry.

View Article and Find Full Text PDF

Post-menopausal wound care management is a substantial burden on health services, since there are an increased number of elderly populations linked with age-related delayed wound healing. The controlled estrogen replacement can accelerate healing of acute cutaneous wounds, linked to its potent anti-inflammatory activity. The electrospinning technique can be used to introduce the desired therapeutic agents to the nanofiber matrix.

View Article and Find Full Text PDF

Functional graded nanobiomembranes (FGMs) with multiple layers were created by a single process using a novel electrospinning system equipped with a generator and a PCI type motion board as a controller in order to control the drug release rate. By varying physical apparatus-related parameters such as nozzle-to-collector distance via a robot and the collector moving velocity the FGMs were formed. For the membrane base layer, poly-(ε-caprolactone) (PCL) with paclitaxel (PTX) was dissolved in a solvent (dichloromethane, N,N-dimethylformamide) and electrospun.

View Article and Find Full Text PDF

A nanofiber composite mat of PU and Eudragit(®) L100-55 was created using electrospinning process. The pH dependent release of paclitaxel was successfully done with the use of PU/EL100-55 nanocomposite mats as the controlling platform. The morphology of the nanofiber composites was surveyed using FESEM and ratios of the polymers affects the diameter of the nanofiber.

View Article and Find Full Text PDF

In this study, an antibacterial electrospun nanofibrous scaffolds with diameters around 400-700 nm were prepared by physically blending polyurethane (PU) with two biopolymers such as cellulose acetate (CA) and zein. Here, PU was used as the foundation polymer, was blended with CA and zein to achieve desirable properties such as better hydrophilicity, excellent cell attachment, proliferation and blood clotting ability. To prevent common clinical infections, an antimicrobial agent, streptomycin sulfate was incorporated into the electrospun fibers and its antimicrobial ability against the gram negative and gram positive bacteria were examined.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessioni5vgflivaqm1bpthtc4ht94r00pm78tn): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once