Publications by authors named "Aeran Jeon"

Free radical-initiated peptide sequencing mass spectrometry (FRIPS MS) was employed to analyze a number of representative singly or doubly protonated phosphopeptides (phosphoserine and phosphotyrosine peptides) in positive ion mode. In contrast to collision-activated dissociation (CAD) results, a loss of a phosphate group occurred to a limited degree for both phosphoserine and phosphotyrosine peptides, and thus, localization of a phosphorylated site was readily achieved. Considering that FRIPS MS supplies a substantial amount of collisional energy to peptides, this result was quite unexpected because a labile phosphate group was conserved.

View Article and Find Full Text PDF

We recently showed that free-radical-initiated peptide sequencing mass spectrometry (FRIPS MS) assisted by the remarkable thermochemical stability of (2,2,6,6-tetramethyl-piperidin-1-yl)oxyl (TEMPO) is another attractive radical-driven peptide fragmentation MS tool. Facile homolytic cleavage of the bond between the benzylic carbon and the oxygen of the TEMPO moiety in o-TEMPO-Bz-C(O)-peptide and the high reactivity of the benzylic radical species generated in •Bz-C(O)-peptide are key elements leading to extensive radical-driven peptide backbone fragmentation. In the present study, we demonstrate that the incorporation of bromine into the benzene ring, i.

View Article and Find Full Text PDF

Peptide dissociation behavior in TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl)-based FRIPS (free radical initiated peptide sequencing) mass spectrometry was analyzed in both positive- and negative-ion modes for a number of peptides including angiotensin II, kinetensin, glycoprotein IIb fragment (296-306), des-Pro(2)-bradykinin, and ubiquitin tryptic fragment (43-48). In the positive mode, the ·Bz-C(O)-peptide radical species was produced exclusively at the initial collisional activation of o-TEMPO-Bz-C(O)-peptides, and two consecutive applications of collisional activation were needed to observe peptide backbone fragments. In contrast, in the negative-ion mode, a single application of collisional activation to o-TEMPO-Bz-C(O)-peptides produced extensive peptide backbone fragmentations as well as ·Bz-C(O)-peptide radical species.

View Article and Find Full Text PDF