Publications by authors named "Aedan Breathnach"

Photoacoustic imaging (PAI) is an emerging biomedical imaging technology, which can potentially be used in the clinic to preoperatively measure melanoma thickness and guide biopsy depth and sample location. We recruited 27 patients with pigmented cutaneous lesions suspicious for melanoma to test the feasibility of a handheld linear-array photoacoustic probe in imaging lesion architecture and measuring tumor depth. The probe was assessed in terms of measurement accuracy, image quality, and ease of application.

View Article and Find Full Text PDF

Aim: To fabricate multimodal nanoconstruct that act as a single node for photoacoustic imaging (PAI) and photothermal therapy (PTT) in the fight against cancer.

Materials & Methods: Dual plasmonic gold nanostars (DPGNS) were chemically synthesized by reducing gold precursor using ascorbic acid and silver ions as shape directing agent. PAI and PTT were performed using commonly available 1064 nm laser source on DPGNS embedded tumor xenografts on mice.

View Article and Find Full Text PDF

Photoacoustic imaging (PAI) with a linear-array-based probe can provide a convenient means of imaging the human microcirculation within its native structural context and adds functional information. PAI using a multielement linear transducer array combined with multichannel collecting system was used for in vivo volumetric imaging of the blood microcirculation, the total concentration of hemoglobin (HbT), and the hemoglobin oxygen saturation (sO₂) within human tissue. Three-dimensional (3-D) PA and ultrasound (US) volumetric scans were acquired from the forearm skin by linearly translating the transducer with a stepper motor over a region of interest, while capturing two-dimensional images using 15, 21, and 40 MHz frequency transducer probes.

View Article and Find Full Text PDF