Publications by authors named "AeSoon L Bensen"

Background: Myelination is a highly regulated process in the vertebrate central nervous system (CNS) whereby oligodendrocytes wrap axons with multiple layers of insulating myelin in order to allow rapid electrical conduction. Establishing the proper pattern of myelin in neural circuits requires communicative axo-glial interactions, however, the molecular interactions that occur between oligodendrocytes and axons during developmental myelination and myelin maintenance remain to be fully elucidated. Our previous work identified G protein-coupled receptor 62 (Gpr62), an uncharacterized orphan g-protein coupled receptor, as being selectively expressed by mature oligodendrocytes within the CNS, suggesting a potential role in myelination or axoglial interactions.

View Article and Find Full Text PDF

Epileptic seizures potently modulate hippocampal adult neurogenesis, and adult-born dentate granule cells contribute to the pathologic retrograde sprouting of mossy fiber axons, both hallmarks of temporal lobe epilepsy. The characteristics of these sprouted synapses, however, have been largely unexplored, and the specific contribution of adult-born granule cells to functional mossy fiber sprouting is unknown, primarily due to technical barriers in isolating sprouted mossy fiber synapses for analysis. Here, we used transgenic mice to permanently pulse-label age-defined cohorts of granule cells born either before or after pilocarpine-induced status epilepticus (SE).

View Article and Find Full Text PDF

Survival of adult-born hippocampal granule cells is modulated by neural activity, and thought to be enhanced by excitatory synaptic signaling. Here, we report that a reduction in the synaptogenic protein neuroligin-1 in adult-born neurons in vivo decreased their survival, but surprisingly, this effect was independent of changes in excitatory synaptic function. Instead, the decreased survival was associated with unexpected changes in dendrite and spine morphology during granule cell maturation, suggesting a link between cell growth and survival.

View Article and Find Full Text PDF

We now know of a surprising number of cases where single neurons contain multiple neurotransmitters. Neurons that contain a fast-acting neurotransmitter, such as glutamate or GABA, and a modulatory transmitter, such as dopamine, are a particularly interesting case because they presumably serve dual signaling functions. The olfactory bulb contains a large population of GABA- and dopamine-containing neurons that have been implicated in normal olfaction as well as in Parkinson's disease.

View Article and Find Full Text PDF

Adult-born dentate granule cells integrate into the hippocampal network, extend neurites and form synapses in otherwise mature tissue. Excitatory and inhibitory inputs innervate these new granule cells in a stereotyped, temporally segregated manner, which presents a unique opportunity to study synapse development in the adult brain. To examine the role of neuroligins as synapse-inducing molecules in vivo, we infected dividing neural precursors in adult mice with a retroviral construct that increased neuroligin-1 levels during granule cell differentiation.

View Article and Find Full Text PDF

Neuronal activity enhances the elaboration of newborn neurons as they integrate into the synaptic circuitry of the adult brain. The role microRNAs play in the transduction of neuronal activity into growth and synapse formation is largely unknown. MicroRNAs can influence the expression of hundreds of genes and thus could regulate gene assemblies during processes like activity-dependent integration.

View Article and Find Full Text PDF

Some cases of autism spectrum disorder have mutations in the lipid phosphatase, phosphatase and tensin homolog on chromosome 10 (Pten). Tissue specific deletion of Pten in the hippocampus and cortex of mice causes anatomical and behavioral abnormalities similar to human autism. However, the impact of reductions in Pten on synaptic and circuit function remains unexplored.

View Article and Find Full Text PDF

In humans and experimental animals, structural and functional changes in neural circuits can accompany the development of epilepsy. In the dentate gyrus, seizures enhance adult neurogenesis, but it is unclear to what extent newborn granule cells participate in seizure-induced synaptic reorganization. During the first weeks of their existence, mouse newborn granule cells labeled with enhanced green fluorescent protein have only short dendrites that lack excitatory input.

View Article and Find Full Text PDF

A substantial fraction of adult-generated granule cells in the dentate gyrus survive and integrate into the existing neuronal network. These newborn neurons must navigate the environment of the adult brain, a setting that is presumably less optimized for neuronal maturation compared with that in the developing brain. We used EGFP (enhanced green fluorescent protein) expression in newborn granule cells to compare the maturation of adult-generated granule cells to those generated in neonates.

View Article and Find Full Text PDF

Neurogenesis in the dentate gyrus begins before birth but then continues into adulthood. Consequently, many newborn granule cells must integrate into a preexisting hippocampal network. Little is known about the timing of this process or the characteristics of the first established synapses.

View Article and Find Full Text PDF