Hierarchical self-assembly is an elegant and energy-efficient bottom-up method for the structuring of complex materials. We demonstrate the synthesis of maghemite nanorods via directed self-assembly, assisted by wormlike micelles, under controlled shear. The experimental data are analyzed by formulating a "slithering snake" mechanism and simulating it on a cubic lattice, using a coarse-grained Monte Carlo framework.
View Article and Find Full Text PDF