Nucleus accumbens dopamine signaling is an important neural substrate for decision-making. Dominant theories generally discretize and homogenize decision-making, when it is in fact a continuous process, with evaluation and re-evaluation components that extend beyond simple outcome prediction into consideration of past and future value. Extensive work has examined mesolimbic dopamine in the context of reward prediction error, but major gaps persist in our understanding of how dopamine regulates volitional and self-guided decision-making.
View Article and Find Full Text PDFChronic opioid exposure causes structural and functional changes in brain circuits, which may contribute to opioid use disorders. Synaptic cell-adhesion molecules are prime candidates for mediating this opioid-evoked plasticity. Neuroligin-3 (NL3) is an X-linked postsynaptic adhesion protein that shapes synaptic function at multiple sites in the mesolimbic dopamine system.
View Article and Find Full Text PDFSunk cost sensitivity describes escalating decision commitment with increased spent resources. On neuroeconomic foraging tasks, mice, rats, and humans show similar escalations from sunk costs while quitting an ongoing countdown to reward. In a new analysis taken across computationally parallel foraging tasks across species and laboratories, we find that these behaviors primarily occur on choices that are economically inconsistent with the subject's other choices, and that they reflect not only the time spent, but also the time remaining, suggesting that these are change-of-mind re-evaluation processes.
View Article and Find Full Text PDFBackground: A clinical hallmark of alcohol use disorder is persistent drinking despite potential adverse consequences. The ventromedial prefrontal cortex (vmPFC) and dorsomedial prefrontal cortex (dmPFC) are positioned to exert top-down control over subcortical regions, such as the nucleus accumbens shell (NAcS) and basolateral amygdala, which encode positive and negative valence of ethanol (EtOH)-related stimuli. Prior rodent studies have implicated these regions in regulation of punished EtOH self-administration (EtOH-SA).
View Article and Find Full Text PDFThere is a compelling evidence that midbrain dopamine (DA) neurons and their projections to the ventral striatum provide a mechanism for motivating reward-seeking behavior, and for utilizing information about unexpected reward prediction errors (RPEs) to guide behavior based on current, rather than historical, outcomes. When this mechanism is compromised in addictions, it may produce patterns of maladaptive behavior that remain obdurate in the face of contrary information and even adverse consequences. Nonetheless, DAergic contributions to performance on behavioral tasks that rely on the ability to flexibly update stimulus-reward relationships remains incompletly understood.
View Article and Find Full Text PDFThe N-methyl--aspartate receptor (NMDAR) is mechanistically involved in the behavioral and neurophysiological effects of alcohol, but the specific role of the GluN2A subunit remains unclear. Here, we exposed mice with constitutive GluN2A gene knockout (KO) to chronic intermittent ethanol vapor (CIE) and tested for EtOH consumption/preference using a two-bottle choice paradigm, as well as NMDAR-mediated transmission at basolateral amygdala synapses via ex vivo slice electrophysiology. Results showed that GluN2A KO mice attained comparable blood EtOH levels in response to CIE exposure, but did not exhibit the significant increase in EtOH drinking that was observed in CIE-exposed wildtypes.
View Article and Find Full Text PDFDetermining the neural factors contributing to compulsive behaviors such as alcohol-use disorders (AUDs) has become a significant focus of current preclinical research. Comparison of phenotypic differences across genetically distinct mouse strains provides one approach to identify molecular and genetic factors contributing to compulsive-like behaviors. Here we examine a rodent assay for punished ethanol self-administration in four widely used inbred strains known to differ on ethanol-related behaviors: C57BL/6J (B6), DBA/2J (D2), 129S1/SvImJ (S1), and BALB/cJ (BALB).
View Article and Find Full Text PDFMood and anxiety disorders are the most prevalent psychiatric conditions and are exacerbated by stress. Recent studies have suggested cyclooxygenase-2 (COX-2) inhibition could represent a novel treatment approach or augmentation strategy for affective disorders including anxiety disorders and major depression. We show that traditional COX-2 inhibitors and a newly developed substrate-selective COX-2 inhibitor (SSCI) reduce a variety of stress-induced behavioral pathologies in mice.
View Article and Find Full Text PDFAddictions, including alcohol use disorders, are characterized by the loss of control over drug seeking and consumption, but the neural circuits and signaling mechanisms responsible for the transition from controlled use to uncontrolled abuse remain incompletely understood. Prior studies have shown that 'compulsive-like' behaviors in rodents, for example, persistent responding for ethanol (EtOH) despite punishment, are increased after chronic exposure to EtOH. The main goal of the current study was to assess the effects of chronic intermittent EtOH (CIE) exposure on multiple, putative measures of compulsive-like EtOH seeking in C57BL/6 J mice.
View Article and Find Full Text PDFImmune-mediated gene therapy using adenovirus expressing Flt3 ligand and thymidine kinase followed by ganciclovir administration (Flt3/TK) effectively elicits tumor regression in preclinical glioma models. Herein, we assessed new strategies to optimize Flt3L/TK therapeutic efficacy in a refractory RG2 orthotopic glioblastoma model. Specifically, we aimed to optimize the therapeutic efficacy of Flt3L/TK treatment in the RG2 model by overexpressing the following genes within the brain tumor microenvironment: 1) a TK mutant with enhanced cytotoxicity (SR39 mutant TK), 2) Flt3L-IgG fusion protein that has a longer half-life, 3) CD40L to stimulate DC maturation, 4) T helper cell type 1 polarizing dendritic cell cytokines interleukin-12 or C-X-C motif ligand 10 chemokine (CXCL)-10, 5) C-C motif ligand 2 chemokine (CCL2) or C-C motif ligand 3 chemokine (CCL3) to enhance dendritic cell recruitment into the tumor microenvironment, 6) T helper cell type 1 cytokines interferon-γ or interleukin-2 to enhance effector T-cell functions, and 7) IκBα or p65RHD (nuclear factor kappa-B [NF-κB] inhibitors) to suppress the function of Foxp3+ Tregs and enhanced effector T-cell functions.
View Article and Find Full Text PDF