Thiamine (vitamin B) is an essential micronutrient in the human diet, found both naturally and as a fortification ingredient in many foods and supplements. However, it is susceptible to degradation due to heat, light, alkaline pH, and sulfites, among effects from other food matrix components, and its degradation has both nutritional and sensory implications as in foods. Thiamine storage stability in solution was monitored over time to determine the effect of solution pH and thiamine concentration on reaction kinetics of degradation without the use of buffers, which are known to affect thiamine stability independent of pH.
View Article and Find Full Text PDFThiamine is a water-soluble essential micronutrient, and grains are the main source of thiamine in the human diet. Refining processes reduce thiamine content; therefore, many flours are enriched with thiamine. Further processes, such as heating (baking), destabilize thiamine.
View Article and Find Full Text PDFThis study investigated thiamine degradation in thiamine mononitrate (TMN):polymer solid dispersions, accounting for the physical state of the vitamin and the recrystallization tendency of TMN in these dispersions. Results were compared with those from solid dispersions containing a different salt form of thiamine (thiamine chloride hydrochloride (TClHCl)). TMN:polymer dispersions were prepared by lyophilizing solutions containing TMN and amorphous polymers (pectin and PVP (polyvinylpyrrolidone)).
View Article and Find Full Text PDFThe crystallization of amorphous sucrose in food products can greatly affect the quality of foods. This study investigated the effects of polyphenols on the crystallization of amorphous sucrose lyophiles. Monoglycosylated, polyglycosylated, and aglycones with differing polyphenol backbones were studied, in addition to bulk food ingredients containing a high concentration of polyphenols.
View Article and Find Full Text PDFSpices, herbs, and seasoning blends containing both crystalline and amorphous ingredients are common throughout the food industry but may exhibit unwanted clumping or caking during storage. Crystalline and amorphous ingredients are known to respond differently to increases in relative humidity (RH) and temperature. The aim of this study was to better characterize what happens to moisture sorption behaviors, water-solid interactions, and physical stability when crystalline and amorphous ingredients are co-formulated in seasoning blends.
View Article and Find Full Text PDFThiamine is an essential micronutrient, but delivery of the vitamin in supplements or foods is challenging because it is unstable under heat, alkaline pH, and processing/storage conditions. Although distributed as a crystalline ingredient, thiamine chloride hydrochloride (TClHCl) likely exists in the amorphous state, specifically in supplements. Amorphous solids are generally less chemically stable than their crystalline counterparts, which is an unexplored area related to thiamine delivery.
View Article and Find Full Text PDFThe crystallization of amorphous sucrose can be problematic in food products. This study explored how emulsifiers (a range of sucrose esters, polysorbates, and soy lecithin) impact the moisture sorption and crystallization of amorphous sucrose lyophiles. Solutions containing sucrose with and without emulsifiers were lyophilized, stored in desiccators, and analyzed by X-ray diffraction, infrared spectroscopy, and polarized light microscopy over time.
View Article and Find Full Text PDFTwo types of thiamine (vitamin B) salts, thiamine mononitrate (TMN) and thiamine chloride hydrochloride (TClHCl), are used to enrich and fortify food products. Both of these thiamine salt forms are sensitive to heat, alkali, oxygen, and radiation, but differences in stability between them have been noted. It was hypothesized that stability differences between the two thiamine salts could be explained by differences in solubility, solution pH, and activation energies for degradation.
View Article and Find Full Text PDFDrug delivery to corneal epithelial cells is challenging due to the intrinsic mechanisms that protect the eye. Here, we report a novel liposomal formulation to encapsulate and deliver a short sequence peptide into human corneal epithelial cells (hTCEpi). Using a mixture of Phosphatidylcholine/Caproylamine/Dioleoylphosphatidylethanolamine (PC/CAP/DOPE), we encapsulated a fluorescent peptide, resulting in anionic liposomes with an average size of 138.
View Article and Find Full Text PDFA traceless polymer-supported synthesis of 4-benzoylquinazolines was developed using the following commercially available building blocks: Fmoc-α-amino acids, 2-nitrobenzensulfonyl chlorides and α-bromoacetophenones. The acyclic intermediates underwent base-catalyzed rearrangement involving C-C and N-N bond formation followed by ring expansion and yielded resin-bound dihydroquinazoline-2-carboxylic acids. After they were released from the resin by treatment with trifluoroacetic acid, base-mediated decarboxylation produced the target quinazolines in moderate-to-high yields and purities.
View Article and Find Full Text PDF