Publications by authors named "Adrienne M Mendrik"

In a broad range of fields it may be desirable to reuse a supervised classification algorithm and apply it to a new data set. However, generalization of such an algorithm and thus achieving a similar classification performance is only possible when the training data used to build the algorithm is similar to new unseen data one wishes to apply it to. It is often unknown in advance how an algorithm will perform on new unseen data, being a crucial reason for not deploying an algorithm at all.

View Article and Find Full Text PDF

Automatic segmentation of brain tissues and white matter hyperintensities of presumed vascular origin (WMH) in MRI of older patients is widely described in the literature. Although brain abnormalities and motion artefacts are common in this age group, most segmentation methods are not evaluated in a setting that includes these items. In the present study, our tissue segmentation method for brain MRI was extended and evaluated for additional WMH segmentation.

View Article and Find Full Text PDF

Introduction: Pooling of multicenter brain imaging data is a trend in studies on ageing related brain diseases. This poses challenges to MR-based brain segmentation. The performance across different field strengths of three widely used automated methods for brain volume measurements was assessed in the present study.

View Article and Find Full Text PDF

Background: The segmentation of brain tissue into cerebrospinal fluid, gray matter, and white matter in magnetic resonance imaging scans is an important procedure to extract regions of interest for quantitative analysis and disease assessment. Manual segmentation requires skilled experts, being a laborious and time-consuming task; therefore, reliable and robust automatic segmentation methods are necessary.

New Method: We propose a segmentation framework based on a Conditional Random Field for brain tissue segmentation, with a Random Forest encoding the likelihood function.

View Article and Find Full Text PDF

Automatic segmentation in MR brain images is important for quantitative analysis in large-scale studies with images acquired at all ages. This paper presents a method for the automatic segmentation of MR brain images into a number of tissue classes using a convolutional neural network. To ensure that the method obtains accurate segmentation details as well as spatial consistency, the network uses multiple patch sizes and multiple convolution kernel sizes to acquire multi-scale information about each voxel.

View Article and Find Full Text PDF

Many methods have been proposed for tissue segmentation in brain MRI scans. The multitude of methods proposed complicates the choice of one method above others. We have therefore established the MRBrainS online evaluation framework for evaluating (semi)automatic algorithms that segment gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF) on 3T brain MRI scans of elderly subjects (65-80 y).

View Article and Find Full Text PDF

Background and Purposes. The 320-detector row CT scanner enables visualization of whole-brain hemodynamic information (dynamic CT angiography (CTA) derived from CT perfusion scans). However, arterial image quality in dynamic CTA (dCTA) is inferior to arterial image quality in standard CTA.

View Article and Find Full Text PDF

Purpose: To suggest a simple and robust technique used to reconstruct high-quality computed tomographic (CT) angiographic images from CT perfusion data and to compare it with currently used CT angiography techniques.

Materials And Methods: Institutional review board approval was waived for this retrospective study, which included 25 consecutive patients who had had a stroke. Temporal maximum intensity projection (tMIP) CT angiographic images were created by using prior temporal filtering as a timing-insensitive technique to produce CT angiographic images from CT perfusion data.

View Article and Find Full Text PDF

Cerebral computed tomography perfusion (CTP) scans are acquired to detect areas of abnormal perfusion in patients with cerebrovascular diseases. These 4D CTP scans consist of multiple sequential 3D CT scans over time. Therefore, to reduce radiation exposure to the patient, the amount of x-ray radiation that can be used per sequential scan is limited, which results in a high level of noise.

View Article and Find Full Text PDF

Noise filtering techniques that maintain image contrast while decreasing image noise have the potential to optimize the quality of computed tomography (CT) images acquired at reduced radiation dose. In this paper, a hybrid diffusion filter with continuous switch (HDCS) is introduced, which exploits the benefits of three-dimensional edge-enhancing diffusion (EED) and coherence-enhancing diffusion (CED). Noise is filtered, while edges, tubular structures, and small spherical structures are preserved.

View Article and Find Full Text PDF