Publications by authors named "Adrienne M Antonson"

Epidemiological studies link exposure to viral infection during pregnancy, including influenza A virus (IAV) infection, with increased incidence of neurodevelopmental disorders (NDDs) in offspring. Models of maternal immune activation (MIA) using viral mimetics demonstrate that activation of maternal intestinal T helper 17 (T17) cells, which produce effector cytokine interleukin (IL)-17, leads to aberrant fetal brain development, such as neocortical malformations. Fetal microglia and border-associated macrophages (BAMs) also serve as potential cellular mediators of MIA-induced cortical abnormalities.

View Article and Find Full Text PDF
Article Synopsis
  • DNA methylation is an epigenetic change that influences gene expression, with effects varying by developmental stage, inflammation, and sex.
  • In a pig model, researchers examined how maternal viral infection and sex affect DNA methylation patterns in the hypothalamus, identifying 120 differentially methylated sites linked to various biological processes.
  • Findings indicate that maternal infection can lead to significant long-term epigenetic changes that differ between males and females, potentially impacting immune response and other developmental processes.
View Article and Find Full Text PDF

The hypothalamic molecular processes participate in the regulation of the neuro-immune-endocrine system, including hormone, metabolite, chemokine circulation, and corresponding physiological and behavioral responses. RNA-sequencing profiles were analyzed to understand the effect of juvenile immune and metabolic distress 100 days after virally elicited maternal immune activation during gestation in pigs. Over 1,300 genes exhibited significant additive or interacting effects of gestational immune activation, juvenile distress, and sex.

View Article and Find Full Text PDF

This study aimed to improve our understanding of how the hypothalamus mediates the effects of prenatal and postnatal challenges on behavior and sensitivity to stimuli. A pig model of virally initiated maternal immune activation (MIA) was used to investigate potential interactions of the prenatal challenge both with sex and with postnatal nursing withdrawal. The hypothalami of 72 females and males were profiled for the effects of MIA and nursing withdrawal using RNA-sequencing.

View Article and Find Full Text PDF

Inflammation during prenatal development can be detrimental to neurodevelopmental processes, increasing the risk of neuropsychiatric disorders. Prenatal exposure to maternal viral infection during pregnancy is a leading environmental risk factor for manifestation of these disorders. Preclinical animal models of maternal immune activation (MIA), established to investigate this link, have revealed common immune and microbial signaling pathways that link mother and fetus and set the tone for prenatal neurodevelopment.

View Article and Find Full Text PDF

The aromatic amino acid tryptophan (Trp) is a precursor for multiple metabolites that can steer proper immune and neurodevelopment as well as social behavior in later life. Dysregulation in the Trp metabolic pathways and abundance of Trp or its derivatives, including indoles, kynurenine (Kyn), and particularly serotonin, has been associated with behavioral deficits and neuropsychiatric disorders including autism spectrum disorders (ASD) and schizophrenia. Previously, we have shown that prenatal stress (PNS) alters placental Trp and serotonin, and reduces Trp-metabolizing members of the maternal colonic microbiota.

View Article and Find Full Text PDF

Maternal infection during pregnancy is a known risk factor for offspring mental health disorders. Animal models of maternal immune activation (MIA) have implicated specific cellular and molecular etiologies of psychiatric illness, but most rely on pathogen mimetics. Here, we developed a mouse model of live H3N2 influenza A virus (IAV) infection during pregnancy that induces a robust inflammatory response but is sublethal to both dams and offspring.

View Article and Find Full Text PDF

Changes at the molecular level capacitate the plasticity displayed by the brain in response to stress stimuli. Weaning stress can trigger molecular changes that influence the physiology of the offspring. Likewise, maternal immune activation (MIA) during gestation has been associated with behavior disorders and molecular changes in the amygdala of the offspring.

View Article and Find Full Text PDF

The combined effects on pig behavior of maternal immune challenge during gestation followed by a second immune challenge later in life have not been studied. Porcine reproductive and respiratory syndrome virus (PRRSV) infection during gestation can elicit maternal immune activation (MIA) yet the interactions with the offspring response to a second immune challenge after birth remains unexplored. Knowledge on the response to viral challenges in rodents has been gained through the use of the viral mimetic polyinosinic-polycytidylic acid (Poly(I:C)), yet the effects of this immune stimulant on pig behavior have not been assessed.

View Article and Find Full Text PDF

Maternal stress during pregnancy is widespread and is associated with poor offspring outcomes, including long-term mental health issues. Prenatal stress-induced fetal neuroinflammation is thought to underlie aberrant neurodevelopment and to derive from a disruption in intrauterine immune homeostasis, though the exact origins are incompletely defined. We aimed to identify divergent immune and microbial metagenome profiles of stressed gestating mice that may trigger detrimental inflammatory signaling at the maternal-fetal interface.

View Article and Find Full Text PDF

The prolonged and sex-dependent impact of maternal immune activation (MIA) during gestation on the molecular pathways of the amygdala, a brain region that influences social, emotional, and other behaviors, is only partially understood. To address this gap, we investigated the effects of viral-elicited MIA during gestation on the amygdala transcriptome of pigs, a species of high molecular and developmental homology to humans. Gene expression levels were measured using RNA-Seq on the amygdala for 3-week-old female and male offspring from MIA and control groups.

View Article and Find Full Text PDF

Prenatal stress (PNS) is associated with neuropsychiatric disorders in offspring, including anxiety, depression, and autism spectrum disorders. There is mounting evidence that these behavioral phenotypes have origins in utero. Maternal microbes, inflammation, and serotonergic dysfunction have been implicated as potential mediators of the behavioral consequences of PNS; whether and how these systems interact is unclear.

View Article and Find Full Text PDF

Maternal infections during pregnancy are associated with increased risk of neurodevelopmental disorders, although the precise mechanisms remain to be elucidated. Previously, we established a maternal immune activation (MIA) model using swine, which results in altered social behaviors of piglet offspring. These behavioral abnormalities occurred in the absence of microglia priming.

View Article and Find Full Text PDF

Neonatal brain development can be disrupted by infection that results in microglial cell activation and neuroinflammation. Studies indicate that polyunsaturated fatty acids (PUFAs) and their metabolites can resolve inflammation. It is not known if dietary PUFA increases lipid metabolites in brain or reduces neuroinflammation in neonates.

View Article and Find Full Text PDF

Maternal infection during pregnancy increases the risk of neurobehavioral problems in offspring. Evidence from rodent models indicates that the maternal immune response to infection can alter fetal brain development, particularly in the hippocampus. However, information on the effects of maternal viral infection on fetal brain development in gyrencephalic species is limited.

View Article and Find Full Text PDF

Maternal infection during pregnancy increases risk for neurodevelopmental disorders and reduced stress resilience in offspring, but the mechanisms are not fully understood. We hypothesized that piglets born from gilts infected with a respiratory virus during late gestation would exhibit aberrant microglia activity, cognitive deficits and reduced sociability. Pregnant gilts were inoculated with porcine reproductive and respiratory syndrome virus (PRRSV; 5×10 TCID of live PRRSV) or saline at gestational day 76.

View Article and Find Full Text PDF