Curr Opin Genet Dev
October 2023
During early development, extrinsic cues prompt a collection of pluripotent cells to begin the extensive process of cellular differentiation that gives rise to all tissues in the mammalian embryo, a process known as gastrulation. Advances in stem cell biology have resulted in the generation of stem cell-based in vitro models of mammalian gastrulation called gastruloids. Gastruloids and subsequent gastruloid-based models are tractable, scalable and more accessible than mammalian embryos.
View Article and Find Full Text PDFPluripotent embryonic stem cells have a unique and characteristic epigenetic profile, which is critical for differentiation to all embryonic germ lineages. When stem cells exit the pluripotent state and commit to lineage-specific identities during the process of gastrulation in early embryogenesis, extensive epigenetic remodelling mediates both the switch in cellular programme and the loss of potential to adopt alternative lineage programmes. However, it remains to be understood how the stem cell epigenetic profile encodes pluripotency, or how dynamic epigenetic regulation helps to direct cell fate specification.
View Article and Find Full Text PDFProteins that can bring together separate DNA sites, either on the same or on different DNA molecules, are critical for a variety of DNA-based processes. However, there are no general and technically simple assays to detect proteins capable of DNA looping in vivo nor to quantitate their in vivo looping efficiency. Here, we develop a quantitative in vivo assay for DNA-looping proteins in Escherichia coli that requires only basic DNA cloning techniques and a LacZ assay.
View Article and Find Full Text PDFSTAR Protoc
September 2020
Context: Single-minded homologue 1 (SIM1) is a transcription factor with several physiological and developmental functions. Haploinsufficiency of SIM1 is associated with early-onset obesity with or without Prader-Willi-like (PWL) features and may exhibit incomplete penetrance.
Case Description: Next-generation sequencing was performed for 2 male patients with obesity, including 1 man presenting with intellectual disability (ID), body mass index (BMI) of 47.
Objective: Genetic studies in obese rodents and humans can provide novel insights into the mechanisms involved in energy homeostasis.
Methods: In this study, we genetically mapped the chromosomal region underlying the development of severe obesity in a mouse line identified as part of a dominant N-ethyl-N-nitrosourea (ENU) mutagenesis screen. We characterized the metabolic and behavioral phenotype of obese mutant mice and examined changes in hypothalamic gene expression.
Transcription factors of the basic helix-loop-helix (bHLH) PER-ARNT-SIM (PAS) family generally have critical and nonredundant biological roles, but some bHLH PAS proteins compete for common cofactors or recognise similar DNA elements. Identifying factors that regulate function of bHLH PAS proteins, particularly in cells where multiple family members are coexpressed, is important for understanding bHLH PAS factor biology. This study identifies and characterises a novel interaction between melanoma-associated antigen D1 (MAGED1) and select members of the bHLH PAS transcription factor family.
View Article and Find Full Text PDFManipulation of gene expression to invoke loss of function (LoF) or gain of function (GoF) phenotypes is important for interrogating complex biological questions both in vitro and in vivo. Doxycycline (Dox)-inducible gene expression systems are commonly used although success is often limited by high background and insufficient sensitivity to Dox. Here we develop broadly applicable platforms for reliable, tightly controlled and reversible Dox-inducible systems for lentiviral mediated generation of cell lines or FLP Recombination-Mediated Cassette Exchange (RMCE) into the Collagen 1a1 (Col1a1) locus (FLP-In Col1a1) in mouse embryonic stem cells.
View Article and Find Full Text PDFThe bHLH (basic helix-loop-helix) PAS (Per/Arnt/Sim) transcription factor SIM1 (single-minded 1) is important for development and function of regions of the hypothalamus that regulate energy homoeostasis and the feeding response. Low-activity SIM1 variants have been identified in individuals with severe early-onset obesity, but the underlying molecular causes of impaired function are unknown. In the present study we assess a number of human SIM1 variants with reduced activity and determine that impaired function is frequently due to defects in dimerization with the essential partner protein ARNT2 (aryl hydrocarbon nuclear translocator 2).
View Article and Find Full Text PDFMammalian basic HLH (helix-loop-helix)-PER-ARNT-SIM (bHLH-PAS) proteins are heterodimeric transcription factors that sense and respond to environmental signals (such as pollutants) or to physiological signals (for example, hypoxia and circadian rhythms) through their two PAS domains. PAS domains form a generic three-dimensional fold, which commonly contains an internal cavity capable of small-molecule binding and outer surfaces adept at protein-protein interactions. These proteins are important in several pro-tumour and antitumour pathways and their activities can be modulated by both natural metabolites and oncometabolites.
View Article and Find Full Text PDFSingle-minded 1 (SIM1) is a basic helix-loop-helix transcription factor involved in the development and function of the paraventricular nucleus of the hypothalamus. Obesity has been reported in Sim1 haploinsufficient mice and in a patient with a balanced translocation disrupting SIM1. We sequenced the coding region of SIM1 in 2,100 patients with severe, early onset obesity and in 1,680 controls.
View Article and Find Full Text PDF