Active avoidance behavior, in which an animal performs an action to avoid a stressor, is crucial for survival and may provide insight into avoidance behaviors seen in anxiety disorders. Active avoidance requires the dorsomedial prefrontal cortex (dmPFC), which is thought to regulate avoidance via downstream projections to the striatum and amygdala. However, the endogenous activity of dmPFC projections during active avoidance learning has never been recorded.
View Article and Find Full Text PDFThe dorsomedial prefrontal cortex (dmPFC) has been linked to avoidance and decision-making under conflict, key neural computations altered in anxiety disorders. However, the heterogeneity of prefrontal projections has obscured identification of specific top-down projections involved. While the dmPFC-amygdala circuit has long been implicated in controlling reflexive fear responses, recent work suggests that dmPFC-dorsomedial striatum (DMS) projections may be more important for regulating avoidance.
View Article and Find Full Text PDFThis study examined whether theta oscillations were compromised by the type of circadian disruption that impairs hippocampal-dependent memory processes. In prior studies on Siberian hamsters, we developed a one-time light treatment that eliminated circadian timing in the central pacemaker, the suprachiasmatic nucleus (SCN). These arrhythmic animals had impaired hippocampal-dependent memory whereas animals made arrhythmic with SCN lesions did not.
View Article and Find Full Text PDF