The sodium/proton exchanger-3 (NHE3) plays a major role in acid-base and extracellular volume regulation and is also implicated in calcium homeostasis. As calcium and phosphate balances are closely linked, we hypothesized that there was a functional link between kidney NHE3 activity, calcium, and phosphate balance. Therefore, we examined calcium and phosphate homeostasis in kidney tubule-specific NHE3 knockout mice (NHE3 mice).
View Article and Find Full Text PDFDietary potassium (K+) supplementation is associated with a lowering effect in blood pressure (BP), but not all studies agree. Here, we examined the effects of short- and long-term K+ supplementation on BP in mice, whether differences depend on the accompanying anion or the sodium (Na+) intake and molecular alterations in the kidney that may underlie BP changes. Relative to the control diet, BP was higher in mice fed a high NaCl (1.
View Article and Find Full Text PDFBackground: The renin-angiotensin system is highly conserved across vertebrates, including zebrafish, which possess orthologous genes coding for renin-angiotensin system proteins, and specialized mural cells of the kidney arterioles, capable of synthesising and secreting renin.
Methods: We generated zebrafish with CRISPR-Cas9-targeted knockout of renin () to investigate renin function in a low blood pressure environment. We used single-cell (10×) RNA sequencing analysis to compare the transcriptome profiles of renin lineage cells from mesonephric kidneys of with zebrafish and with the metanephric kidneys of and mice.
The kidney cortical collecting duct (CCD) comprises principal cells (PCs), intercalated cells (IC), and the recently discovered intermediate cell type. Kidney pathology in a mouse model of the syndrome of apparent aldosterone excess revealed plasticity of the CCD, with altered PC:intermediate cell:IC ratio. The self-immortalized mouse CCD cell line, mCCD, shows functional characteristics of PCs, but displays a range of cell types, including intermediate cells, making it ideal to study plasticity.
View Article and Find Full Text PDFCellular plasticity is a topical subject with interest spanning a wide range of fields from developmental biology to regenerative medicine. Even the nomenclature is a subject of debate, and the underlying mechanisms are still under investigation. On top of injury repair, cell plasticity is a constant physiological process in adult organisms and tissues, in response to homeostatic challenges.
View Article and Find Full Text PDF