Publications by authors named "Adrienn Pentek"

Cardiac progenitor cells (CPCs) are committed to the cardiac lineage but retain their proliferative capacity before becoming quiescent mature cardiomyocytes (CMs). In medical therapy and research, the use of human pluripotent stem cell-derived CPCs would have several advantages compared with mature CMs, as the progenitors show better engraftment into existing heart tissues, and provide unique potential for cardiovascular developmental as well as for pharmacological studies. Here, we demonstrate that the CAG promoter-driven enhanced green fluorescence protein (EGFP) reporter system enables the identification and isolation of embryonic stem cell-derived CPCs.

View Article and Find Full Text PDF

Background: ATP-binding cassette (ABC) transporters have key roles in various physiological functions as well as providing chemical defense and stress tolerance in human tissues. In this study, we have examined the expression pattern of all ABC proteins in pluripotent human embryonic stem cells (hESCs) and in their differentiated progenies. We paid special attention to the cellular expression and localization of multidrug transporter ABC proteins.

View Article and Find Full Text PDF

Measurement of changes in intracellular calcium concentration is one of the most common and useful tools for studying signal transduction pathways or cellular responses in basic research and drug screening purposes as well. Increasing number of such applications using human pluripotent stem cells and their derivatives requires development of calcium signal measurements for this special cell type. Here we describe a modified protocol for analysis of calcium signaling events in human embryonic stem cells, which can be used for other pluripotent cell types (such as iPSC) or their differentiated offspring as well.

View Article and Find Full Text PDF

Intracellular calcium signaling pathways play a major role in cellular responses such as proliferation, differentiation and apoptosis. Human embryonic stem cells (hESC) provide new possibilities to explore the development and differentiation of various cell types of the human body. Intracellular calcium responses to various ligands and the calcium signaling pathways, however, have not been thoroughly studied in embryonic stem cells and in their differentiated progenies.

View Article and Find Full Text PDF

ABCG2 is a plasma membrane multidrug transporter with an established role in the cancer drug-resistance phenotype. This protein is expressed in a variety of tissues, including several types of stem cell. Although ABCG2 is not essential for life, knock-out mice were found to be hypersensitive to xenobiotics and had reduced levels of the side population of hematopoietic stem cells.

View Article and Find Full Text PDF

Human stem cells provide an important novel tool for generating in vitro pharmacological and toxicological test systems. In the development of new targeted therapies, as well as in critical safety issues, including hepato-, neuro- and cardio-toxicity, animal-based tests are mostly unsatisfactory, whereas the use of in vitro model systems is limited by the unavailability of relevant human tissues. Human embryonic stem cell lines may fill this gap and offer an advantage over primary cultures as well as tissue-derived (adult) stem cells.

View Article and Find Full Text PDF