Introduction: Although deep brain stimulation is nowadays performed worldwide, the biomechanical aspects of electrode implantation received little attention, mainly as physicians focused on the medical aspects, such as the optimal indication of the surgical procedure, the positive and adverse effects, and the long-term follow-up. We aimed to describe electrode deformations and brain shift immediately after implantation, as it may highlight our comprehension of intracranial and intracerebral mechanics.
Materials And Methods: Sixty electrodes of 30 patients suffering from severe symptoms of Parkinson's disease and essential tremor were studied.
During the past decades, the Ising distribution has attracted interest in many applied disciplines, as the maximum entropy distribution associated to any set of correlated binary ("spin") variables with observed means and covariances. However, numerically speaking, the Ising distribution is unpractical, so alternative models are often preferred to handle correlated binary data. One popular alternative, especially in life sciences, is the Cox distribution (or the closely related dichotomized Gaussian distribution and log-normal Cox point process), where the spins are generated independently conditioned on the drawing of a latent variable with a multivariate normal distribution.
View Article and Find Full Text PDFAll of our perceptual experiences arise from the activity of neural populations. Here we study the formation of such percepts under the assumption that they emerge from a linear readout, i.e.
View Article and Find Full Text PDFCortical activity involves large populations of neurons, even when it is limited to functionally coherent areas. Electrophysiological recordings, on the other hand, involve comparatively small neural ensembles, even when modern-day techniques are used. Here we review results which have started to fill the gap between these two scales of inquiry, by shedding light on the statistical distributions of activity in large populations of cells.
View Article and Find Full Text PDFJ Comput Neurosci
April 2009
We propose a new retina simulation software, called Virtual Retina, which transforms a video into spike trains. Our goal is twofold: Allow large scale simulations (up to 100,000 neurons) in reasonable processing times and keep a strong biological plausibility, taking into account implementation constraints. The underlying model includes a linear model of filtering in the Outer Plexiform Layer, a shunting feedback at the level of bipolar cells accounting for rapid contrast gain control, and a spike generation process modeling ganglion cells.
View Article and Find Full Text PDFMultistate neurones, a generalization of the popular McCulloch-Pitts binary neurones, are described; they are intended to model the fact that neurones may be in several different states of activity, while McCulloch-Pitts neurones model two states only: active or inactive. We show that as a consequence, multidimensional synapses are necessary to describe the dynamics of the model. As an illustration, we show how to derive the parameters of formal multistate neurones and their associated multidimensional synapses from simulations involving Hodgkin-Huxley neurones.
View Article and Find Full Text PDF