A continuous isoelectric electroencephalogram reflects an interruption of endogenously-generated activity in cortical networks and systematically results in a complete dissolution of conscious processes. This electro-cerebral inactivity occurs during various brain disorders, including hypothermia, drug intoxication, long-lasting anoxia and brain trauma. It can also be induced in a therapeutic context, following the administration of high doses of barbiturate-derived compounds, to interrupt a hyper-refractory status epilepticus.
View Article and Find Full Text PDFNeural activation increases blood flow locally. This vascular signal is used by functional imaging techniques to infer the location and strength of neural activity. However, the precise spatial scale over which neural and vascular signals are correlated is unknown.
View Article and Find Full Text PDFThe way neurons process information depends both on their intrinsic membrane properties and on the dynamics of the afferent synaptic network. In particular, endogenously-generated network activity, which strongly varies as a function of the state of vigilance, significantly modulates neuronal computation. To investigate how different spontaneous cerebral dynamics impact single neurons' integrative properties, we developed a new experimental strategy in the rat consisting in suppressing in vivo all cerebral activity by means of a systemic injection of a high dose of sodium pentobarbital.
View Article and Find Full Text PDFDEP-domain containing 5 (DEPDC5), encoding a repressor of the mechanistic target of rapamycin complex 1 (mTORC1) signaling pathway, has recently emerged as a major gene mutated in familial focal epilepsies and focal cortical dysplasia. Here we established a global knockout rat using TALEN technology to investigate in vivo the impact of Depdc5-deficiency. Homozygous Depdc5(-/-) embryos died from embryonic day 14.
View Article and Find Full Text PDFWhole-cell patch recording is an essential tool for quantitatively establishing the biophysics of brain function, particularly in vivo. This method is of particular interest for studying the functional roles of cortical glial cells in the intact brain, which cannot be assessed with extracellular recordings. Nevertheless, a reasonable success rate remains a challenge because of stability, recording duration and electrical quality constraints, particularly for voltage clamp, dynamic clamp or conductance measurements.
View Article and Find Full Text PDFIn the primary visual cortex of non-rodent mammals, neurons are clustered according to their preference for stimulus features such as orientation(1-4), direction(5-7), ocular dominance(8,9) and binocular disparity(9). Orientation selectivity is the most widely studied feature and a continuous map with a quasi-periodic layout for preferred orientation is present across the entire primary visual cortex(10,11). Integrating the synaptic, cellular and network contributions that lead to stimulus selective responses in these functional maps requires the hybridization of imaging techniques that span sub-micron to millimeter spatial scales.
View Article and Find Full Text PDFUncovering the functional properties of individual synaptic inputs on single neurons is critical for understanding the computational role of synapses and dendrites. Previous studies combined whole-cell patch recording to load neurons with a fluorescent calcium indicator and two-photon imaging to map subcellular changes in fluorescence upon sensory stimulation. By hyperpolarizing the neuron below spike threshold, the patch electrode ensured that changes in fluorescence associated with synaptic events were isolated from those caused by back-propagating action potentials.
View Article and Find Full Text PDF