Bone metastasis remains the most frequent and the deadliest complication of prostate cancer (PCa). Mechanisms leading to the homing of tumor cells to bone remain poorly characterized. Role of chemokines in providing navigational cues to migrating cancer cells bearing specific receptors is well established.
View Article and Find Full Text PDFProstate gland is surrounded by periprostatic adipose tissue (PPAT), which is increasingly believed to play a paracrine role in prostate cancer progression. Our previous work demonstrates that adipocytes promote homing of prostate cancer cells to PPAT and that this effect is upregulated by obesity. Here, we show that once tumor cells have invaded PPAT (mimicked by an model of coculture), they establish a bidirectional crosstalk with adipocytes, which promotes tumor cell invasion.
View Article and Find Full Text PDFIn breast cancer, a key feature of peritumoral adipocytes is their loss of lipid content observed both in vitro and in human tumors. The free fatty acids (FFAs), released by adipocytes after lipolysis induced by tumor secretions, are transferred and stored in tumor cells as triglycerides in lipid droplets. In tumor cell lines, we demonstrate that FFAs can be released over time from lipid droplets through an adipose triglyceride lipase-dependent (ATGL-dependent) lipolytic pathway.
View Article and Find Full Text PDFObesity favours the occurrence of locally disseminated prostate cancer in the periprostatic adipose tissue (PPAT) surrounding the prostate gland. Here we show that adipocytes from PPAT support the directed migration of prostate cancer cells and that this event is strongly promoted by obesity. This process is dependent on the secretion of the chemokine CCL7 by adipocytes, which diffuses from PPAT to the peripheral zone of the prostate, stimulating the migration of CCR3 expressing tumour cells.
View Article and Find Full Text PDF