Glycerophospholipid membranes are one of the key cellular components. Still, their species-dependent composition and homochirality remain an elusive subject. In the context of the astrophysical circularly polarized light scenario likely involved in the generation of a chiral bias in meteoritic amino and sugar acids in space, and consequently in the origin of life's homochirality on Earth, this study reports the first measurements of circular dichroism and anisotropy spectra of a selection of glycerophospholipids, their chiral backbones and their analogs.
View Article and Find Full Text PDFCarbohydrates, in particular the d-enantiomers of ribose, 2-deoxyribose, and glucose, are essential to life's informational biopolymers (RNA/DNA) and for supplying energy to living cells through glycolysis. Considered to be potential biosignatures in the search of past or present life, our capacity to detect and quantify these essential sugars is crucial for future space missions to the Moon, Mars or Titan as well as for sample-return missions. However, the enantioselective analysis of carbohydrates is challenging and both research and routine applications, are lacking efficient methods that combine highly sensitive and reproducible detection with baseline enantioselective resolution and reliable enantiomeric excess (ee) measurements.
View Article and Find Full Text PDFKuiper Belt objects exhibit a wider color range than any other solar system population. The origin of this color diversity is unknown, but likely the result of the prolonged irradiation of organic materials by galactic cosmic rays (GCRs). Here, we combine ultrahigh-vacuum irradiation experiments with comprehensive spectroscopic analyses to examine the color evolution during GCR processing methane and acetylene under Kuiper Belt conditions.
View Article and Find Full Text PDFPropylene oxide, the first chiral molecule recently detected in the interstellar medium, has once again raised the question whether biomolecular chirality might have cosmic origins. However, accurate chiroptical properties of propylene oxide in the ultraviolet spectral range necessary to suggest possible asymmetric synthetic routes in the gas phase are scarce. Here, we report on the first experimental measurements of the anisotropy spectra of gas-phase propylene oxide in the vacuum ultraviolet spectral range.
View Article and Find Full Text PDFThis work proposes a comprehensive two-dimensional gas chromatography method for the resolution and quantification of 27 amino acids, including 17 enantiomeric pairs, as stable N-trifluoroacetyl-O-methyl ester derivatives. The derivatization approach in combination with enantioselective two-dimensional gas chromatography has proven to be highly responsive with a method detection limit of 1-7 pg even for sterically hindered amino acids such as α,α-dialkylated, and N-alkylated amino acids. Accurate determination of the enantiomeric excess was achieved with errors in the range of ±0.
View Article and Find Full Text PDFLife on Earth employs chiral amino acids in stereochemical L-form, but the cause of molecular symmetry breaking remains unknown. Chiroptical properties of amino acids - expressed in circular dichroism (CD) - have been previously investigated in solid and solution phase. However, both environments distort the intrinsic charge distribution associated with CD transitions.
View Article and Find Full Text PDFHomochiral proteins orchestrate biological functions throughout all domains of life, but the origin of the uniform l-stereochemistry of amino acids remains unknown. Here, we describe enantioselective adsorption experiments of racemic alanine and leucine onto homochiral - and -quartz as a possible mechanism for the abiotic emergence of biological homochirality. Substantial racemate resolution with enantiomeric excesses of up to 55% are demonstrated to potentially occur in interstitial pores, along grain boundaries or small fractures in local quartz-bearing environments.
View Article and Find Full Text PDFRegulated cell death (RCD) results from the activation of one or more signal transduction modules both in physiological or pathological conditions. It is now established that RCD is involved in numerous human diseases, including cancer. As regulated cell death processes can be modulated by pharmacological tools, the research reported here aims to characterize new marine compounds acting as RCD modulators.
View Article and Find Full Text PDFThe biomolecular homochirality in living organisms has been investigated for decades, but its origin remains poorly understood. It has been shown that circular polarized light (CPL) and other energy sources are capable of inducing small enantiomeric excesses (s) in some primary biomolecules, such as amino acids or sugars. Since the first findings of amino acids in carbonaceous meteorites, a scenario in which essential chiral biomolecules originate in space and are delivered by celestial bodies has arisen.
View Article and Find Full Text PDFThe aim of this survey was to determine the chemical composition of essential oils (EO) of five conifers acclimated in Corsica by GC(RI), GC-MS and C NMR. L. decidua needle and wood EOs contained as majors components: α- and β-pinenes, germacrene D (needles) and bornyl acetate (wood).
View Article and Find Full Text PDF