Publications by authors named "Adrien Favier"

The longitudinal and transverse nuclear magnetic resonance relaxivity dispersion (NMRD) of H in water induced by the paramagnetic relaxation enhancement (PRE) of dissolved lanthanide ions (Ln) can become very strong. Longitudinal and transverse H NMRD for Gd, Dy, Er and Ho were measured from 20 MHz/0.47 T to 1382 MHz/32.

View Article and Find Full Text PDF

Monoclonal antibodies (mAbs) are biotherapeutics that have achieved outstanding success in treating many life-threatening and chronic diseases. The recognition of an antigen is mediated by the fragment antigen binding (Fab) regions composed by four different disulfide bridge-linked immunoglobulin domains. NMR is a powerful method to assess the integrity, the structure and interaction of Fabs, but site specific analysis has been so far hampered by the size of the Fabs and the lack of approaches to produce isotopically labeled samples.

View Article and Find Full Text PDF

Photoconvertible fluorescent proteins (PCFP) are important cellular markers in advanced imaging modalities such as photoactivatable localization microscopy (PALM). However, their complex photophysical and photochemical behavior hampers applications such as quantitative and single-particle-tracking PALM. This work employs multidimensional NMR combined with ensemble fluorescence measurements to show that the popular mEos4b in its Green state populates two conformations (A and B), differing in side-chain protonation of the conserved residues E212 and H62,  altering the hydrogen-bond network in the chromophore pocket.

View Article and Find Full Text PDF

RIPK2 is an essential adaptor for NOD signalling and its kinase domain is a drug target for NOD-related diseases, such as inflammatory bowel disease. However, recent work indicates that the phosphorylation activity of RIPK2 is dispensable for signalling and that inhibitors of both RIPK2 activity and RIPK2 ubiquitination prevent the essential interaction between RIPK2 and the BIR2 domain of XIAP, the key RIPK2 ubiquitin E3 ligase. Moreover, XIAP BIR2 antagonists also block this interaction.

View Article and Find Full Text PDF

Uranium (U) is a naturally-occurring radionuclide that is toxic to living organisms. Given that proteins are primary targets of U(VI), their identification is an essential step towards understanding the mechanisms of radionuclide toxicity, and possibly detoxification. Here, we implemented a chromatographic strategy including immobilized metal affinity chromatography to trap protein targets of uranyl in Arabidopsis thaliana.

View Article and Find Full Text PDF

HSP90 are abundant molecular chaperones, assisting the folding of several hundred client proteins, including substrates involved in tumor growth or neurodegenerative diseases. A complex set of large ATP-driven structural changes occurs during HSP90 functional cycle. However, the existence of such structural rearrangements in apo HSP90 has remained unclear.

View Article and Find Full Text PDF

Components of specialized secretion systems, which span the inner and outer membranes in Gram-negative bacteria, include ring-forming proteins whose oligomerization was proposed to be promoted by domains called RBM for "Ring-Building Motifs". During spore formation in Gram-positive bacteria, a transport system called the SpoIIIA-SpoIIQ complex also assembles in the double membrane that surrounds the forespore following its endocytosis by the mother cell. The presence of RBM domains in some of the SpoIIIA proteins led to the hypothesis that they would assemble into rings connecting the two membranes and form a conduit between the mother cell and forespore.

View Article and Find Full Text PDF

In Angiosperms, the plastid-encoded RNA polymerase (PEP) is a multimeric enzyme, essential for the proper expression of the plastid genome during chloroplast biogenesis. It is especially required for the light initiated expression of photosynthesis genes and the subsequent build-up of the photosynthetic apparatus. The PEP complex is composed of a prokaryotic-type core of four plastid-encoded subunits and 12 nuclear-encoded PEP-associated proteins (PAPs).

View Article and Find Full Text PDF

We introduce ssNMRlib, a comprehensive suite of pulse sequences and jython scripts for user-friendly solid-state nuclear magnetic resonance (NMR) data acquisition, parameter optimization and storage on Bruker spectrometers. ssNMRlib allows the straightforward setup of even highly complex multi-dimensional solid-state NMR experiments with a few clicks from an intuitive graphical interface directly from the Bruker Topspin acquisition software. ssNMRlib allows the setup of experiments in a magnetic-field-independent manner and thus facilitates the workflow in a multi-spectrometer setting with a centralized library.

View Article and Find Full Text PDF

Fatty acid β-oxidation (FAO) and oxidative phosphorylation (OXPHOS) are mitochondrial redox processes that generate ATP. The biogenesis of the respiratory Complex I, a 1 MDa multiprotein complex that is responsible for initiating OXPHOS, is mediated by assembly factors including the mitochondrial complex I assembly (MCIA) complex. However, the organisation and the role of the MCIA complex are still unclear.

View Article and Find Full Text PDF

The initial greening of angiosperms involves light activation of photoreceptors that trigger photomorphogenesis, followed by the development of chloroplasts. In these semi-autonomous organelles, construction of the photosynthetic apparatus depends on the coordination of nuclear and plastid gene expression. Here, we show that the expression of PAP8, an essential subunit of the plastid-encoded RNA polymerase (PEP) in Arabidopsis thaliana, is under the control of a regulatory element recognized by the photomorphogenic factor HY5.

View Article and Find Full Text PDF

Bacteria employ several mechanisms, and most notably secretion systems, to translocate effectors from the cytoplasm to the extracellular environment or the cell surface. Pseudomonas aeruginosa widely employs secretion machineries such as the Type III Secretion System to support virulence and cytotoxicity. However, recently identified P.

View Article and Find Full Text PDF

Atomic-resolution structure determination is crucial for understanding protein function. Cryo-EM and NMR spectroscopy both provide structural information, but currently cryo-EM does not routinely give access to atomic-level structural data, and, generally, NMR structure determination is restricted to small (<30 kDa) proteins. We introduce an integrated structure determination approach that simultaneously uses NMR and EM data to overcome the limits of each of these methods.

View Article and Find Full Text PDF

We present NMRlib, a suite of jython-based tools designed for Bruker spectrometers (TopSpin versions 3.2-4.0) that allow easy setup, management, and exchange of NMR experiments.

View Article and Find Full Text PDF

We propose here SOFAST-HMBC as a new complementary NMR tool for aromatic side chain assignment of protein samples at natural C abundance. The characteristic peak patterns detected in SOFAST-HMBC for each aromatic side chain allow straightforward assignment of all protons and carbons (including quaternary ones) of the aromatic ring, and for tyrosine and phenylalanine, connection to the CB of the aliphatic chain. The performance of SOFAST-HMBC is demonstrated for three small proteins (7-14 kDa) at millimolar sample concentration using modern high-field NMR instruments equipped with cryogenically cooled probes.

View Article and Find Full Text PDF

We present an improved fast mixing device based on the rapid mixing of two solutions inside the NMR probe, as originally proposed by Hore and coworkers (J. Am. Chem.

View Article and Find Full Text PDF

Ensuring the correct folding of RNA molecules in the cell is of major importance for a large variety of biological functions. Therefore, chaperone proteins that assist RNA in adopting their functionally active states are abundant in all living organisms. An important feature of RNA chaperone proteins is that they do not require an external energy source to perform their activity, and that they interact transiently and non-specifically with their RNA targets.

View Article and Find Full Text PDF

NMR spectroscopy is a powerful tool for studying molecular dynamics at atomic resolution simultaneously for a large number of nuclear sites. In this communication, we combine two powerful NMR techniques, relaxation-dispersion NMR and real-time NMR, in order to obtain unprecedented information on the conformational exchange dynamics present in short-lived excited protein states, such as those transiently accumulated during protein folding. We demonstrate the feasibility of the approach for the amyloidogenic protein β2-microglobulin that folds via an intermediate state which is believed to be responsible for the onset of the aggregation process leading to amyloid formation.

View Article and Find Full Text PDF

Carbon-sulfur bond formation at aliphatic positions is a challenging reaction that is performed efficiently by radical S-adenosyl-L-methionine (SAM) enzymes. Here we report that 1,3-thiazolidines can act as ligands and substrates for the radical SAM enzyme HydE, which is involved in the assembly of the active site of [FeFe]-hydrogenase. Using X-ray crystallography, in vitro assays and NMR spectroscopy we identified a radical-based reaction mechanism that is best described as the formation of a C-centred radical that concomitantly attacks the sulfur atom of a thioether.

View Article and Find Full Text PDF
Article Synopsis
  • * Its activity is triggered by chemical stress and DNA binding, and Wss1 is essential for surviving UV radiation and certain DNA damage-inducing drugs.
  • * Wss1 operates within a complex with Cdc48 and Doa1 to extend SUMO chains on target proteins, and its workings may link DNA damage response to autophagy.
View Article and Find Full Text PDF

Three experiments, BEST-TROSY HNCA+, HNCO+ and HNCACB+ are presented for sequential backbone resonance assignment of (13)C, (15)N labelled proteins. The novelty of these experiments with respect to conventional pulse sequences is the detection of additional orthogonal coherence transfer pathways that results in enhanced sensitivity for sequential correlations without significantly compromising the intensity of intra-residue correlation peaks. In addition, a 2-step phase cycle separates peaks originating from the orthogonal coherence transfer pathways in 2 sub-spectra, thus providing similar information as obtained from performing a pair of sequential and intra-residue correlation experiments.

View Article and Find Full Text PDF

Zinc (Zn(2+)) homeostasis is critical for pathogen host colonization and invasion. Polyhistidine triad (Pht) proteins, located at the surface of various streptococci, have been proposed to be involved in Zn(2+) homeostasis. The phtD gene, coding for a Zn(2+)-binding protein, is organized in an operon with adcAII coding for the extracellular part of a Zn(2+) transporter.

View Article and Find Full Text PDF

The membrane proximal external region (MPER) of the HIV-1 glycoprotein gp41 is targeted by the broadly neutralizing antibodies 2F5 and 4E10. To date, no immunization regimen in animals or humans has produced HIV-1 neutralizing MPER-specific antibodies. We immunized llamas with gp41-MPER proteoliposomes and selected a MPER-specific single chain antibody (VHH), 2H10, whose epitope overlaps with that of mAb 2F5.

View Article and Find Full Text PDF

Understanding the molecular mechanisms involved in virus replication and particle assembly is of primary fundamental and biomedical importance. Intrinsic conformational disorder plays a prominent role in viral proteins and their interaction with other viral and host cell proteins via transiently populated structural elements. Here, we report on the results of an investigation of an intrinsically disordered 188-residue fragment of the hepatitis C virus non-structural protein 5A (NS5A), which contains a classical poly-proline Src homology 3 (SH3) binding motif, using sensitivity- and resolution-optimized multidimensional NMR methods, complemented by small-angle X-ray scattering data.

View Article and Find Full Text PDF

Understanding the driving forces governing protein assembly requires the characterization of interactions at molecular level. We focus on two homologous oppositely charged proteins, lysozyme and α-lactalbumin, which can assemble into microspheres. The assembly early steps were characterized through the identification of interacting surfaces monitored at residue level by NMR chemical shift perturbations by titrating one (15)N-labeled protein with its unlabeled partner.

View Article and Find Full Text PDF