Publications by authors named "Adriele Rodrigues Dos Santos"

Background: The efficacy of photodynamic therapy (PDT) depends on the combination of light and a photosensitizer for inactivation of microorganisms. However, finding the ideal conditions for the factors involved in this technique is time and cost-consuming. The rotational composite central design (RCCD) is a tool that can be allied with PDT to achieve precise results within a shorter working time.

View Article and Find Full Text PDF

The objective of this study was to evaluate the antimicrobial effectiveness of cinnamaldehyde (CIN) and potassium sorbate (P.S.), alone and in combination, against Typhimurium and and in apple jam.

View Article and Find Full Text PDF

Microbial contamination control is a public health concern and challenge for the food industry. Antimicrobial technologies employing natural agents may be useful in the food industry for these purposes. This work aimed to investigate the effect of photodynamic inactivation using curcumin in Pluronic® P123 nanoparticles (Cur/P123) at different pH and blue LED light against Staphylococcus aureus.

View Article and Find Full Text PDF

Photoinactivation is a promising technique for Staphylococcus aureus control. This microorganism causes foodborne diseases (DTAs) and forms biofilms that are highly resistant and difficult to eradicate. Thus, the aim of this study was to evaluate the photodynamic activity of hypericin (HYP) in polymeric nanoparticles (Pluronic® P123) against S.

View Article and Find Full Text PDF

This study evaluated the rose bengal- and erythrosine-mediated photoinactivation against Salmonella Typhimurium and Staphylococcus aureus planktonic and sessile cells using green LED as a light source. The free-living or 2-day-old biofilm cells were treated with different concentrations of the photosensitizing agents and subjected to irradiation. Only 5 min photosensitization with rose bengal at 25 nmol L and 75 μmol L completely eliminated S.

View Article and Find Full Text PDF

The effect of cinnamaldehyde against biofilm cells of Salmonella Typhimurium ATCC 14028 was evaluated. We also assessed differential protein patterns that were expressed by biofilms compared with planktonic cells and protein expression by cinnamaldehyde-treated biofilms cells. This compound decreased biofilm biomass and metabolic activity of biofilms at both concentrations tested.

View Article and Find Full Text PDF