Publications by authors named "Adriele A de Almeida"

The search for new metal-organic compounds as candidates for quantum information processing technologies is in the spotlight. Several metal ions and organic linkers have been used to obtain such compounds. Herein, we describe the synthesis, crystal structures, and cryomagnetic properties of two air-stable isostructural neodymium(III) and europium(III) one-dimensional (1D) coordination polymers of formula [Nd(Hmpa)(DMSO)] (1) and [Eu(Hmpa)(DMSO)] (2) [Hmpa=N-(4-methylphenyl)oxamate, and DMSO=dimethylsulfoxide].

View Article and Find Full Text PDF

Developing and investigating advanced multifunctional materials with magnetic properties as candidates for assembling spin qubits for quantum computing is imperative. A new polytopic ligand based on oxamate and aniline was used to promote the synthesis of three neutral homometallic lanthanide-coordinated polymers. New complexes with the formula {Ln(phox)(DMSO)(HO)}, where Ln = Eu (1), Gd (2), and Tb (3) [phox = -(phenyl)oxamate and DMSO = dimethylsulfoxide], were synthesized and well characterized by spectroscopic methods as well as X-ray crystallographic analysis.

View Article and Find Full Text PDF

Magnetic hyperthermia (MH) has emerged as a promising technology with diverse applications in medical and technological fields, leveraging the remote induction of temperature elevation through an alternating magnetic field. While FeO nanoparticles with an average size around 12-25 nm are commonly employed in MH systems, this study introduces a strategy to produce smaller particles (less than or equal to 10 nm) with enhanced heating efficiency, as measured by specific power absorption (SPA). We conducted an exhaustive and detailed investigation into the morphological and magnetic properties of CoFeO nanoparticles, aiming to optimize their MH response.

View Article and Find Full Text PDF

The synthesis, crystal structure and magnetic properties of an oxamate-containing erbium(III) complex, namely, tetrabutylammonium aqua[N-(2,4,6-trimethylphenyl)oxamato]erbium(III)-dimethyl sulfoxide-water (1/3/1.5), (CHN)[Er(CHNO)(HO)]·3CHOS·1.5HO or n-BuN[Er(Htmpa)(HO)]·3DMSO·1.

View Article and Find Full Text PDF

Magnetite nanoparticles (NPs) are one of the most investigated nanomaterials so far and modern synthesis methods currently provide an exceptional control of their size, shape, crystallinity and surface functionalization. These advances have enabled their use in different fields ranging from environmental applications to biomedicine. However, several studies have shown that the precise composition and crystal structure of magnetite NPs depend on their redox phase transformations, which have a profound impact on their physicochemical properties and, ultimately, on their technological applications.

View Article and Find Full Text PDF

In this work it is shown a precise way to optimize the heat generation in high viscosity magnetic colloids, by adjusting the Néel relaxation time in core/shell bimagnetic nanoparticles, for magnetic fluid hyperthermia (MFH) applications. To pursue this goal, FeO/Zn Co FeO core/shell nanoparticles were synthesized with 8.5 nm mean core diameter, encapsulated in a shell of ∼1.

View Article and Find Full Text PDF

In this work it is shown a precise way to optimize the heat generation in high viscosity magnetic colloids, by adjusting the Néel relaxation time in core/shell bimagnetic nanoparticles, for Magnetic Fluid Hyperthermia applications. To pursue this goal, Fe3O4/ZnxCo1-xFe2O4 core/shell nanoparticles were synthesized with 8.5 nm mean core diameter, encapsulated in a shell of ~1.

View Article and Find Full Text PDF

This paper reports on the study of the interactions between ascorbic acid (AA) and bovine serum albumin (BSA) in aqueous solution as well as in films (BSA/AA films) prepared by the layer-by-layer technique. Regarding to solution studies, a hyperchromism (in the range of ultraviolet) was found as a function of AA concentration, which suggested the formation of aggregates from AA and BSA. Binding constant, K, determined for aggregates from BSA and AA was found to be about 10(2) M(-1), which indicated low affinity of AA with BSA.

View Article and Find Full Text PDF