Publications by authors named "Adriano Mesquita Alencar"

In vitro cellular models provide valuable insights into the adaptive biochemical mechanisms triggered by cells to cope with the stress situation induced by hypoxia and reoxygenation cycles. The first biological data generated in studies based on this micrometric life-scale has the potential to provide us a global overview about the main biochemical phenomena presented in some reported preconditioning therapies in life-scale of higher dimensions. Thus, in this study, a cell incubator was designed and manufactured to produce a cellular model of heart hypoxia followed by reoxygenation (HfR) through consecutive repetitions of hypoxia-normoxia gas exchange.

View Article and Find Full Text PDF

The interaction between silver nanoparticles (AgNPs) and molecules producing coronas plays a key role in cytotoxicity mechanisms. Once adsorbed coronas determine the destiny of nanomaterials in vivo, their effective deployment in the biomedical field requires a comprehensive understanding of the dynamic interactions of biomolecules with nanoparticles. In this work, we characterized 40 nm AgNPs in three different nutritional cell media at different molar concentrations and incubation times to study the binding mechanism of molecules on surface nanoparticles.

View Article and Find Full Text PDF

Knockout of multifunction gene cysteine- and glycine-rich protein 3 (CSRP3) in cardiomyocytes (CMs) of mice leads to heart dilation, severely affecting its functions. In humans, CSRP3 mutations are associated with hypertrophic (HCM) and dilated cardiomyopathy (DCM). The absence of the CSRP3 expression produces unknown effects on in vitro neonatal CMs' metabolism.

View Article and Find Full Text PDF

We present a new Monte Carlo method to simulate ionic liquids in slab geometry at constant potential. The algorithm is built upon two previous methods while retaining the advantages of each of them. The method is tested against a Poisson-Boltzmann theory and the constant surface charge ensemble, achieving consistency among all of them.

View Article and Find Full Text PDF

Objective: Chronic Rhinosinusitis with Nasal Polyps (CRSwNP) is a disease that features a mechanical dysfunction involving chronic inflammation and altered tissue remodeling. In this study, we aim to evaluate the fibroblast morphology and its cellular traction force in primary fibroblasts cell cultures obtained from both healthy individuals (n=7) and patients with CRSwNP (n=8).

Methods: Using a Traction-force Microscopy we analyzed parameters of Force/Tension in fibroblasts cultures in both experimental groups.

View Article and Find Full Text PDF

 The importance of our study lies in the fact that we have demonstrated the occurrence of mechanical dysfunction within polypoid tissues, which promotes the development of polyps in the nasal cavity.  To change the paradigm of nasal polyposis (NP). In this new conception, the chronic nasal inflammatory process that occurs in response to allergies, to pollution, to changes in the epithelial barrier, or to other factors is merely the trigger of the development of the disease in individuals with a genetic predisposition to an abnormal tissue remodeling process, which leads to a derangement of the mechanical properties of the nasal mucosa and, consequently, allows it to grow unchecked.

View Article and Find Full Text PDF

The cytoskeleton (CSK) is a tensed fiber framework that supports, shapes and stabilizes the cell. The CSK is in a constant state of remodeling, moreover, which is an active non-equilibrium thermodynamic process. We report here that cytoskeletal remodeling involves reconfigurations that are not only sudden but also are transmitted to great distances within the cell in a fashion reminiscent of quakes in the Earth's crust.

View Article and Find Full Text PDF

Diesel exhaust particles (DEPs) from diesel engines produce adverse alterations in cells of the airways by activating intracellular signaling pathways and apoptotic gene overexpression, and also by influencing metabolism and cytoskeleton changes. This study used human bronchial epithelium cells (BEAS-2B) in culture and evaluates their exposure to DEPs (15ug/mL for 1 and 2 h) in order to determine changes to cell rheology (viscoelasticity) and gene expression of the enzymes involved in oxidative stress, apoptosis, and cytotoxicity. BEAS-2B cells exposed to DEPs were found to have a significant loss in stiffness, membrane stability, and mitochondrial activity.

View Article and Find Full Text PDF

Aims: Recent evidence shows the rigidity of vascular smooth muscle cells (VSMC) contributes to vascular mechanics. Arterial rigidity is an independent cardiovascular risk factor whose associated modifications in VSMC viscoelasticity have never been investigated. This study's objective was to evaluate if the arterial rigidity risk factors aging, African ancestry, female sex, smoking and diabetes mellitus are associated with VMSC stiffening in an experimental model using a human derived vascular smooth muscle primary cell line repository.

View Article and Find Full Text PDF

A cell mechanical stimulation equipment, based on cell substrate deformation, and a more sensitive method for measuring adhesion of cells were developed. A probe, precisely positioned close to the cell, was capable of a vertical localized mechanical stimulation with a temporal frequency of 207 Hz, and strain magnitude of 50%. This setup was characterized and used to probe the response of Human Umbilical Endothelial Vein Cells (HUVECs) in terms of calcium signaling.

View Article and Find Full Text PDF

Natural myocardial markers, or speckles, originated from constructive and destructive interference of ultrasound in the tissues may provide early diagnosis of myocardial changes and be used in the prediction of some cardiac events. Due to its relatively temporal stability, speckles can be tracked by dedicated software along the cardiac cycle, enabling the analysis of the systolic and diastolic function. They are identified by either conventional 2D grey scale and by 3D echo, conferring independence of the insonation angle, thus allowing assessment of cardiac mechanics in the three spatial planes: longitudinal, circumferential, and radial.

View Article and Find Full Text PDF

Particulate matter from diesel exhaust (DEP) has toxic properties and can activate intracellular signaling pathways and induce metabolic changes. This study was conducted to evaluate the activation of extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) and to analyze the mucin profile (acid (AB(+) ), neutral (PAS(+) ), or mixed (AB/PAS(+) ) mucus) and vacuolization (V) of tracheal explants after treatment with 50 or 100 μg/mL DEP for 30 or 60 min. Western blot analyses showed small increases in ERK1/2 and JNK phosphorylation after 30 min of 100 μg/mL DEP treatment compared with the control.

View Article and Find Full Text PDF

Vascular smooth muscle cells (VSMCs) are thought to assume a quiescent and homogeneous mechanical behavior after arterial tree development phase. However, VSMCs are known to be molecularly heterogeneous in other aspects and their mechanics may play a role in pathological situations. Our aim was to evaluate VSMCs from different arterial beds in terms of mechanics and proteomics, as well as investigate factors that may influence this phenotype.

View Article and Find Full Text PDF

One drawback of in vitro cell culturing is the dedifferentiation process that cells experience. Smooth muscle cells (SMC) also change molecularly and morphologically with long term culture. The main objective of this study was to evaluate if culture passages interfere in vascular SMC mechanical behavior.

View Article and Find Full Text PDF