Publications by authors named "Adriano Caliman"

Article Synopsis
  • Patchy data on litter decomposition in wetlands limits understanding of carbon storage, prompting a global study involving over 180 wetlands across multiple countries and climates.
  • The study found that freshwater wetlands and tidal marshes had more organic matter remaining after decay, indicating better potential for carbon preservation in these areas.
  • Elevated temperatures positively affect the decomposition of resistant organic matter, with projections suggesting an increase in decay rates by 2050; however, the impact varies by ecosystem type and highlights the need to recognize both local and global factors influencing carbon storage.
View Article and Find Full Text PDF

The variation within and across species has afterlife effects on carbon and nutrient cycling through the alteration of litter decomposability. However, the focus on leaves may not reflect a whole-plant economic spectrum of strategies. Here, we assessed the patterns and predictors of flower and leaf-litter decomposition at the intra- (i.

View Article and Find Full Text PDF

Bromeliads play a vital role in preserving biodiversity in the Neotropical region. To understand their impact on arthropod diversity in Brazil's semi-arid region, we studied the rupicolous bromeliad Encholirium spectabile. From 2011 to 2018, we observed the arthropod fauna in E.

View Article and Find Full Text PDF

The concept of Ecosystem Services (ES) recognizes the importance of natural ecosystems in supporting human well-being. Hymenoptera, a diverse group of insects including ants, bees, and wasps, play crucial roles in providing ESs. Despite their significance, the provision of ESs by Hymenoptera is often undervalued, leading to ecosystem degradation and loss of important services.

View Article and Find Full Text PDF

The quality and diversity of leaf litter are important variables in determining the availability of energy in detritus-based food webs. These factors can be represented by the stoichiometric proportion between carbon and multiple nutrients, and the mixture of litter from different taxonomic and/or functional origins. In aquatic ecosystems, factors that accelerate litter decomposition can influence the secondary productivity of planktonic microbiota, which act as a link between litter and higher trophic levels.

View Article and Find Full Text PDF

Ecological Stoichiometry (ES) and the Metabolic Theory of Ecology (MTE) are the main theories used to explain consumers' nutrient recycling. ES posits that imbalances between an animal's body and its diet stoichiometry determine its nutrient excretion rates, whereas the MTE predicts that excretion reflects metabolic activity arising from body size and temperature. We measured nitrogen, phosphorus and N:P excretion, body N:P stoichiometry, body size, and temperature for 12 fish species from a Brazilian stream.

View Article and Find Full Text PDF

The emphasis on mechanisms governing the interaction among predators (e.g. cooperation, competition or intraguild predation) has driven the understanding of multiple-predator effects on prey survival and dynamics.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how the diversity of detritivores (organisms that break down dead organic material) affects the decomposition of litter in streams across a global scale, involving 38 streams in 23 countries.
  • Results show a positive correlation between detritivore diversity and litter decomposition, with this effect being particularly strong in tropical regions.
  • The findings highlight the potential impact of detritivore extinctions on decomposition processes, especially in tropical areas where diversity is already low and environmental stressors are common.
View Article and Find Full Text PDF

Running waters contribute substantially to global carbon fluxes through decomposition of terrestrial plant litter by aquatic microorganisms and detritivores. Diversity of this litter may influence instream decomposition globally in ways that are not yet understood. We investigated latitudinal differences in decomposition of litter mixtures of low and high functional diversity in 40 streams on 6 continents and spanning 113° of latitude.

View Article and Find Full Text PDF
Article Synopsis
  • The study explores how local abundance of bacteria in freshwater lakes influences their overall distribution, focusing on both core and satellite operational taxonomic units (OTUs).
  • The researchers conducted their analysis in southeastern Brazil, examining data from 60 shallow lakes to identify the bacterial communities present and their spatial abundance.
  • Findings revealed a significant bimodal occupancy-frequency distribution influenced by environmental factors like pH and nutrients, emphasizing the connection between local conditions and microbial diversity across different habitats.
View Article and Find Full Text PDF

Globally, conversion of pristine areas to anthropogenic landscapes is one of the main causes of ecosystem service losses. Land uses associated with urbanization and farming can be major sources of pollution to freshwaters promoting artificial inputs of several elements, leading to impaired water quality. However, how the effects of land use on freshwater quality are contingent on properties of the local landscape and climate is still poorly understood.

View Article and Find Full Text PDF

The role of tropical lakes and reservoirs in the global carbon cycle has received increasing attention in the past decade, but our understanding of its variability is still limited. The metabolism of tropical systems may differ profoundly from temperate systems due to the higher temperatures and wider variations in precipitation. Here, we investigated the spatial and temporal patterns of the variability in the partial pressure of carbon dioxide (pCO) and its drivers in a set of 102 low-latitude lakes and reservoirs that encompass wide gradients of precipitation, productivity and landscape properties (lake area, perimeter-to-area ratio, catchment size, catchment area-to-lake area ratio, and types of catchment land use).

View Article and Find Full Text PDF

A core question involving both plant physiology and community ecology is whether traits from different organs are coordinated across species, beyond pairwise trait correlations. The strength of within-community trait coordination has been hypothesized to increase along gradients of environmental harshness, due to the cost of adopting ecological strategies out of the viable niche space supported by the abiotic conditions. We evaluated the strength of trait relationship and coordination in a stressful environment using 21 leaf and stem traits of 21 deciduous and evergreen woody species from a heath vegetation growing on coastal sandy plain in northeastern South America.

View Article and Find Full Text PDF

Animals can be important in modulating ecosystem-level nutrient cycling, although their importance varies greatly among species and ecosystems. Nutrient cycling rates of individual animals represent valuable data for testing the predictions of important frameworks such as the Metabolic Theory of Ecology (MTE) and ecological stoichiometry (ES). They also represent an important set of functional traits that may reflect both environmental and phylogenetic influences.

View Article and Find Full Text PDF

The mere presence of predators (i.e., predation risk) can alter consumer physiology by restricting food intake and inducing stress, which can ultimately affect prey-mediated ecosystem processes such as nutrient cycling.

View Article and Find Full Text PDF

The relative importance of species richness and identity for the diversity-function relationship remains controversial. We mechanistically explored the potential contribution of ecosystem processes complexity (EPC; i.e.

View Article and Find Full Text PDF

Tests of the biodiversity and ecosystem functioning (BEF) relationship have focused little attention on the importance of interactions between species diversity and other attributes of ecological communities such as community biomass. Moreover, BEF research has been mainly derived from studies measuring a single ecosystem process that often represents resource consumption within a given habitat. Focus on single processes has prevented us from exploring the characteristics of ecosystem processes that can be critical in helping us to identify how novel pathways throughout BEF mechanisms may operate.

View Article and Find Full Text PDF

Understanding the effects of predators and resources on primary producers has been a major focus of interest in ecology. Within this context, the trophic cascade concept especially concerning the pelagic zone of lakes has been the focus of the majority of these studies. However, littoral food webs could be especially interesting because base trophic levels may be strongly regulated by consumers and prone to be light limited.

View Article and Find Full Text PDF