Publications by authors named "Adrianne Clifford"

We describe here a strategy that can distinguish between Staphylococcus species truly present in a clinical sample from contaminating Staphylococcus species introduced during the testing process. Contaminating Staphylococcus species are present at low levels in PCR reagents and colonize lab personnel. To eliminate detection of contaminants, we describe an approach that utilizes addition of sufficient quantities of either non-target Staphylococcal cells (Staphylococcus succinus or Staphylococcus muscae) or synthetic oligonucleotide templates to helicase dependent isothermal amplification reactions to consume Staphylococcus-specific tuf and mecA gene primers such that contaminating Staphylococcus amplification is suppressed to below assay limits of detection.

View Article and Find Full Text PDF

Pim-1 has emerged as an attractive target for developing therapeutic agents for treating disorders involving abnormal cell growth, especially cancers. Herein we present lead optimization, chemical synthesis and biological evaluation of pyrazolo[1,5-a]pyrimidine compounds as potent and selective inhibitors of Pim-1 starting from a hit from virtual screening. These pyrazolo[1,5-a]pyrimidine compounds strongly inhibited Pim-1 and Flt-3 kinases.

View Article and Find Full Text PDF

The proto-oncogene proviral integration site for moloney murine leukemia virus (PIM) kinases (PIM-1, PIM-2, and PIM-3) are serine/threonine kinases that are involved in a number of signaling pathways important to cancer cells. PIM kinases act in downstream effector functions as inhibitors of apoptosis and as positive regulators of G1-S phase progression through the cell cycle. PIM kinases are upregulated in multiple cancer indications, including lymphoma, leukemia, multiple myeloma, and prostate, gastric, and head and neck cancers.

View Article and Find Full Text PDF

We present the discovery and optimization of a novel series of inhibitors of bacterial UDP-N-acetylglucosamine 2-epimerase (called 2-epimerase in this paper). Starting from virtual screening hits, the activity of various inhibitory molecules was optimized using a combination of structure-based and rational design approaches. We successfully designed and identified a 2-epimerase inhibitor (compound that we named Epimerox) which blocked the growth of methicillin-resistant (MRSA) at 3.

View Article and Find Full Text PDF

Activators of the pyruvate kinase M2 (PKM2) are currently attracting significant interest as potential anticancer therapies. They may achieve a novel antiproliferation response in cancer cells through modulation of the classic 'Warburg effect' characteristic of aberrant metabolism. In this Letter, we describe the optimization of a weakly active screening hit to a structurally novel series of small molecule 3-(trifluoromethyl)-1H-pyrazole-5-carboxamides as potent PKM2 activators.

View Article and Find Full Text PDF

2-Arylamino-4-aryl-pyrimidines were found to be potent inhibitors of PAK1 kinase. The synthesis and SAR are described. The incorporation of a bromide at the 5-position of the pyrimidine core and in combination with a 1,2-dimethylpiperazine pendant domain yielded a lead compound with potent PAK1 inhibition and anti-proliferative activity in various colon cancer cell lines.

View Article and Find Full Text PDF

Inactivation of the M2 form of pyruvate kinase (PKM2) in cancer cells is associated with increased tumorigenicity. To test the hypothesis that tumor growth may be inhibited through the PKM2 pathway, we generated a series of small-molecule PKM2 activators. The compounds exhibited low nanomolar activity in both biochemical and cell-based PKM2 activity assays.

View Article and Find Full Text PDF