Publications by authors named "Adrianna Bielowka"

Background: Disease biomarkers are often identified long after initiating pathologies, hampering mechanistic understanding and development of preventative strategies. We hypothesised that aberrant cellular responses to normally-encountered stresses may be relevant to later disease states.

Aim: To model two under-explored acute cellular stresses for blood-exposed cells, and cross-reference to known biomarkers of disease.

View Article and Find Full Text PDF

For monogenic diseases caused by pathogenic loss-of-function DNA variants, attention focuses on dysregulated gene-specific pathways, usually considering molecular subtypes together within causal genes. To better understand phenotypic variability in hereditary hemorrhagic telangiectasia (HHT), we subcategorized pathogenic DNA variants in ENG/endoglin, ACVRL1/ALK1, and SMAD4 if they generated premature termination codons (PTCs) subject to nonsense-mediated decay. In 3 patient cohorts, a PTC-based classification system explained some previously puzzling hemorrhage variability.

View Article and Find Full Text PDF

Despite whole-genome sequencing (WGS), many cases of single-gene disorders remain unsolved, impeding diagnosis and preventative care for people whose disease-causing variants escape detection. Since early WGS data analytic steps prioritize protein-coding sequences, to simultaneously prioritize variants in non-coding regions rich in transcribed and critical regulatory sequences, we developed GROFFFY, an analytic tool that integrates coordinates for regions with experimental evidence of functionality. Applied to WGS data from solved and unsolved hereditary hemorrhagic telangiectasia (HHT) recruits to the 100,000 Genomes Project, GROFFFY-based filtration reduced the mean number of variants/DNA from 4,867,167 to 21,486, without deleting disease-causal variants.

View Article and Find Full Text PDF

Using three European and two Chinese genome-wide association studies (GWAS), we investigated the performance of genetic risk scores (GRSs) for predicting the susceptibility and severity of systemic lupus erythematosus (SLE), using renal disease as a proxy for severity. We used four GWASs to test the performance of GRS both cross validating within the European population and between European and Chinese populations. The performance of GRS in SLE risk prediction was evaluated by receiver operating characteristic (ROC) curves.

View Article and Find Full Text PDF