Etoposide-loaded poly(lactic-co-glycolic acid) implants were developed for intravitreal application. Implants were prepared by a solvent-casting method and characterized in terms of content uniformity, morphology, drug-polymer interaction, stability, and sterility. In vitro drug release was investigated and the implant degradation was monitored by the percent of mass loss.
View Article and Find Full Text PDFIn this study, the effects of the controlled and sustained release of methotrexate from poly(ɛ-caprolactone) implants were evaluated in the solid Ehrlich tumor. The drug locally leached from the implantable devices was capable of reducing the tumor growth and the necrotic areas of the tumor site. Furthermore, the methotrexate exerted its anti-tumor effect probably by the recruitment of neutrophils at the tumor site, which assisted in modulating the growth of the tumor.
View Article and Find Full Text PDFContext: Methotrexate (MTX) is used in the treatment of malignancies; however, its clinical application is limited by its toxic dose-related side effects. An alternative to overcome the toxicity of the MTX in healthy tissues is the design of an implantable device capable of controlling the delivery of this drug for an extended period within the tumor site.
Objective: To develop methotrexate-loaded poly(ε-caprolactone) implants (MTX PCL implants) and to demonstrate their efficacy as local drug delivery systems capable of inhibiting Ehrlich solid tumor bearing mice.
Poly(ε-caprolactone) implants containing etoposide, an important chemotherapeutic agent and topoisomerase II inhibitor, were fabricated by a melt method and characterized in terms of content uniformity, morphology, drug physical state, and sterility. In vitro and in vivo drug release from the implants was also evaluated. The cytotoxic activity of implants against HeLa cells was studied.
View Article and Find Full Text PDF