Publications by authors named "Adriana da Cunha Faria Melibeu"

The Transient Receptor Potential (TRP) constitutes a family of channels subdivided into seven subfamilies: Ankyrin (TRPA), Canonical (TRPC), Melastatin (TRPM), Mucolipin (TRPML), no-mechano-potential C (TRPN), Polycystic (TRPP), and Vanilloid (TRPV). Although they are structurally similar to one another, the peculiarities of each subfamily are key to the response to stimuli and the signaling pathway that each one triggers. TRPs are non-selective cation channels, most of which are permeable to Ca, which is a well-established second messenger that modulates several intracellular signaling pathways and is involved in physiological and pathological conditions in various cell types.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by selective dopaminergic loss. Non dopaminergic neurotransmitters such as glutamate are also involved in PD progression. NMDA receptor/postsynaptic density protein 95 (PSD-95)/neuronal nitric oxide synthase (nNOS) activation is involved in neuronal excitability in PD.

View Article and Find Full Text PDF

The retinotectal topography of rats develops within the first three postnatal weeks during the critical period. Previous studies have shown that monocular enucleation results in plasticity of the intact retinotectal pathway in a time-dependent manner. Glial fibrillary acidic protein (GFAP), an astrocyte marker, is up-regulated after central nervous system injury.

View Article and Find Full Text PDF

Enteric glial cells (EGCs) constitute the majority of the neural population of the enteric nervous system and are found in all layers of the gastrointestinal tract. It is active in enteric functions such as immunomodulation, participating in inflammation and intestinal epithelial barrier (IEB) regulation. Both EGCs and IEB have been described as altered in Parkinson's disease (PD).

View Article and Find Full Text PDF

Monocular eye enucleation (ME) is a classical paradigm to induce neural plasticity in retinal ganglion cells (RGCs) axons from the intact eye, especially when performed within the critical period of visual system development. However, the precise mechanisms underlying the axonal sprouting and synaptogenesis seen in this model remain poorly understood. In the present work, we investigated the temporal alterations in phosphorylation of three kinases related to axonal growth and synaptogenesis-GSK3β (an important repressor of axonal outgrowth), AKT, and ERK-in superior colliculus of rats submitted to ME during early postnatal development.

View Article and Find Full Text PDF

Lesions in the central nervous system (CNS) can often induce structural reorganization within intact circuits of the brain. Several studies show advances in the understanding of mechanisms of brain plasticity and the role of the immune system activation. Microglia, a myeloid derived cell population colonizes the CNS during early phases of embryonic development.

View Article and Find Full Text PDF

Objective: Interleukin 4 (IL-4) is an anti-inflammatory cytokine related to different aspects of central nervous system development such as survival, proliferation, and differentiation, among others. Our goals were to investigate the effect of intravitreous treatment with IL-4 on the activation of downstream signaling pathways in the retina and the distribution of retinal axons within the superior colliculus (SC).

Material And Methods: Lister hooded rats were submitted to an intravitreous injection of either IL-4 (5 U/µL) or PBS (vehicle) at postnatal day 10 (PND10).

View Article and Find Full Text PDF

The serotonin transporter (5-HTT) regulates serotonin homeostasis and has been used as a target for different drugs in depression treatment. Although the serotonergic system has received a lot of attention, little is known about the effects of these drugs over serotonin transporters. In this work, we investigated the expression pattern of 5-HTT during development of the visual system and the influence of fluoxetine on different signaling pathways.

View Article and Find Full Text PDF

Amyloid precursor protein (APP) is essential to physiological processes such as synapse formation and neural plasticity. Sequential proteolysis of APP by beta- and gamma-secretases generates amyloid-beta peptide (Aβ), the main component of senile plaques in Alzheimer Disease. Alternative APP cleavage by alpha-secretase occurs within Aβ domain, releasing soluble α-APP (sAPPα), a neurotrophic fragment.

View Article and Find Full Text PDF

The development and maturation of sensory systems depends on the correct pattern of connections which occurs during a critical period when axonal elimination and synaptic plasticity are involved in the formation of topographical maps. Among the mechanisms involved in synaptic stabilization, essential fatty acids (EFAs), available only through diet, appear as precursors of signaling molecules involved in modulation of gene expression and neurotransmitter release. Omega-3 fatty acids, such as docosahexaenoic acid (DHA), are considered EFAs and are accumulated in the brain during fetal period and neonatal development.

View Article and Find Full Text PDF
Article Synopsis
  • The retinotectal projection in rodents develops a precise organization over the first ten days of life, influenced by factors like GAP-43 protein expression.
  • After retinal injuries, such as lesions or monocular enucleation, these projections undergo reorganization, linked to increased levels of phosphorylated GAP-43 (pGAP-43), which promotes axon growth and synaptic function.
  • The study used Lister Hooded rats to analyze GAP-43 expression during normal development and after surgery, finding that pGAP-43 levels rise in response to monocular enucleation, highlighting its role in brain plasticity.
View Article and Find Full Text PDF
Article Synopsis
  • The study explores how a low tryptophan diet affects neural plasticity in rats during critical brain development stages following retinal injury.
  • Tryptophan, a precursor to serotonin, is essential for proper brain maturation, and its restriction leads to decreased plasticity in the visual pathway compared to control diets.
  • Restoring tryptophan during the critical period can fully recover plasticity, while doing so later has no effect, highlighting the importance of timing in nutritional interventions.
View Article and Find Full Text PDF

Tryptophan is an essential amino acid and metabolic precursor of serotonin. Serotonin is both a classical neurotransmitter and a signaling molecule that plays crucial roles in the development of neural circuits and plasticity. The specification of neural circuits in rodents occurs during the postnatal period with conspicuous influence of environmental factors including the nutritional status.

View Article and Find Full Text PDF