Background And Aims: Several chronic multifactorial diseases originate from energy unbalance between food intake and body energy expenditure, including non-alcoholic fatty liver disease (NAFLD), diabetes, and cardiovascular disorders. Vascular endothelium plays a central role in body homeostasis, and NAFLD is often associated with endothelial dysfunction (ED), the first step in atherosclerosis. Both sugars and fatty acids (FAs) are fuel sources for energy production, but their excess leads to liver steatosis which may trigger ED through a network of mechanisms which need to be clarified.
View Article and Find Full Text PDFAims: Adipocyte hypertrophy is the main cause of obesity. A deeper understanding of the molecular mechanisms regulating adipocyte dysfunction may help to plan strategies to treat/prevent obesity and its metabolic complications. Here, we investigated in vitro the molecular alterations associated with early adipocyte hypertrophy, focusing on mitochondrial dysfunction.
View Article and Find Full Text PDFS-adenosylmethionine (SAMe) is an endogenous methyl donor derived from ATP and methionine that has pleiotropic functions. Most SAMe is synthetized and consumed in the liver, where it acts as the main methylating agent and in protection against the free radical toxicity. Previous studies have shown that the administration of SAMe as a supernutrient exerted many beneficial effects in various tissues, mainly in the liver.
View Article and Find Full Text PDFThyme-like plants including . are widely used as food and folk medicinal remedies in the Mediterranean area. This study aimed to explore the in vitro antitumor potential of polyphenol-enriched extracts from aerial parts of .
View Article and Find Full Text PDFBiochim Biophys Acta Mol Cell Biol Lipids
March 2020
Hepatic steatosis is the hallmark of non-alcoholic fatty liver disease (NAFLD), the hepatic manifestation of the metabolic syndrome and insulin resistance with potential evolution towards non-alcoholic steatohepatitis (NASH), cirrhosis and hepatocellular carcinoma. Key roles of autophagy and oxidative stress in hepatic lipid accumulation and NAFLD progression are recognized. Here, we employed a rat hepatoma cell model of NAFLD progression made of FaO cells exposed to oleate/palmitate followed or not by TNFα treatment to investigate the molecular mechanisms through which silybin, a lipid-lowering nutraceutical, may improve hepatic lipid dyshomeostasis.
View Article and Find Full Text PDFOverconsumption of fats and sugars is a major cause of development of non‑alcoholic fatty liver disease (NAFLD). The main objectives of the present study were to explore the pathways sustaining the interfering metabolic effects of excess fructose and fatty acids in hepatocytes, and to clarify the mechanisms through which the nutraceutical silybin rescues the functional and metabolic alterations that are associated with the NALFD progression. Cultured hepatocytes were exposed to fructose and fatty acids, alone or in combination, to induce different grades of steatosis in vitro.
View Article and Find Full Text PDFJ Mech Behav Biomed Mater
September 2019
Non-alcoholic fatty liver disease (NAFLD) is a chronic liver disease often associated with overnutrition. Number and morphometry of lipid droplets (LDs) define micro vs macrovesicular steatosis, influence the morphology and function of hepatocytes and possibly their stiffness. The link between grade and features of steatosis and biomechanical properties of single hepatocytes requires deeper investigations.
View Article and Find Full Text PDFEthnopharmacological Relevance: Thymbra spicata, a member of the Lamiaceae family, is native to eastern Mediterranean area. Leaves of this plant are rich in phenolic compounds and are a popular remedy of traditional medicine in Lebanon to prevent and/or counteract hyperlipidemia and hyperglycemia.
Aim Of The Study: To evaluate the antisteatotic and antioxidant activities of extracts from leaves of Thymbra spicata L.
Non-alcoholic fatty liver disease (NAFLD) is a major cause of liver-related morbidity and mortality. Oxidative stress and release of pro-inflammatory cytokines, such as tumor necrosis factor α (TNFα), are major consequences of hepatic lipid overload, which can contribute to progression of NAFLD to non-alcoholic steatohepatitis (NASH). Also, mitochondria are involved in the NAFLD pathogenesis for their role in hepatic lipid metabolism.
View Article and Find Full Text PDFNon-alcoholic fatty liver disease (NAFLD) is the most common liver disorder in industrialized countries and is associated with increased risk of cardiovascular, hepatic and metabolic diseases. Molecular mechanisms on the root of the disrupted lipid homeostasis in NAFLD and potential therapeutic strategies can benefit of in vivo and in vitro experimental models of fatty liver. Here, we describe the high fat diet (HFD)-fed rat in vivo model, and two in vitro models, the primary cultured rat fatty hepatocytes or the FaO rat hepatoma fatty cells, mimicking human NAFLD.
View Article and Find Full Text PDFPurpose: Phenolic compounds (PC) of virgin olive oil exert several biochemical and pharmacological beneficial effects. Some dietary PC seem to prevent/improve obesity and metabolic-related disorders such as non-alcoholic fatty liver disease (NAFLD). We investigated the possible effects of PC extracted from olive pomace (PEOP) and of the main single molecules present in the extract (tyrosol, apigenin, oleuropein, p-coumaric and caffeic acid) in protecting hepatocytes and endothelial cells against triglyceride accumulation and oxidative stress.
View Article and Find Full Text PDFComp Biochem Physiol C Toxicol Pharmacol
January 2017
In vertebrate systems, many endocrine disruptors (EDs) can also interfere with energy and lipid metabolism, thus acting as metabolic disruptors. At the cellular level, these effects are mainly mediated by interactions with nuclear receptors/transcription factors, leading to the modulation of genes involved in lipid homeostasis, as well as by rapid, receptor-independent pathways. Several potential metabolic disruptors are found in aquatic environments.
View Article and Find Full Text PDFAim: To investigate in vitro the therapeutic effect and mechanisms of silybin in a cellular model of hepatic steatosis.
Methods: Rat hepatoma FaO cells were loaded with lipids by exposure to 0.75 mmol/L oleate/palmitate for 3 h to mimic liver steatosis.
Quartz is a well-known occupational fibrogenic agent able to cause fibrosis and other severe pulmonary diseases such as silicosis and lung cancer. The silicotic pathology owes its severity to the structural and chemo-physical properties of the particles such as shape, size and abundance of surface radicals. In earlier studies, we reported that significant amounts of surface radicals can be generated on crystalline silica by chemical aggression with ascorbic acid (AA), a vitamin naturally abundant in the lung surfactant, and this reaction led to enhanced cytotoxicity and production of inflammatory mediators in a macrophage cell line.
View Article and Find Full Text PDFExcess ethanol consumption and fatty acid intake lead to a cumulative effect on liver steatosis through still unclear mechanisms. This study aimed to characterize the lipid homoeostasis alterations under the exposure of hepatocytes to ethanol alone or combined with fatty acids. FaO hepatoma cells were incubated in the absence (C) or in the presence of 100 mM ethanol (EtOH) or 0.
View Article and Find Full Text PDFAdipose tissue, dietary lipids and de novo lipogenesis are sources of hepatic free fatty acids (FFAs) that are stored in lipid droplets (LDs) as triacylglycerols (TAGs). Destiny of TAGs stored in LDs is determined by LD proteomic equipment. When adipose triglyceride lipase (ATGL) localizes at LD surface the lipid mobilization is stimulated.
View Article and Find Full Text PDFIntroduction: Systemic delivery of bone marrow-derived mesenchymal stem cells (MSC) seems to be of benefit in the treatment of multiple sclerosis (MS), an autoimmune disease of the central nervous system (CNS) sustained by migration of T cells across the brain blood barrier (BBB) and subsequent induction of inflammatory lesions into CNS. MSC have been found to modulate several effector functions of T cells. In this study, we investigated the effects of MSC on adhesion molecules and receptors on T cell surface that sustain their transendothelial migration.
View Article and Find Full Text PDFTransgenic mice overexpressing spermine oxidase (SMO) in the cerebral cortex (Dach-SMO mice) showed increased vulnerability to excitotoxic brain injury and kainate-induced epileptic seizures. To investigate the mechanisms by which SMO overexpression leads to increased susceptibility to kainate excitotoxicity and seizure, in the cerebral cortex of Dach-SMO and control mice we assessed markers for astrocyte proliferation and neuron loss, and the ability of kainate to evoke glutamate release from nerve terminals and astrocyte processes. Moreover, we assessed a possible role of astrocytes in an in vitro model of epileptic-like activity in combined cortico-hippocampal slices recorded with a multi-electrode array device.
View Article and Find Full Text PDFObjectives: Oxidative stress seems to be involved in Rett syndrome (RTT). The aim of this study was to assess the antioxidant status in RTT children with MECP2 gene mutations with respect to healthy controls, and to explore novel blood antioxidant markers for RTT severity.
Methods: In erythrocytes from RTT females aged 2-14 years (n = 27) and age-matched controls (n = 27), we measured the levels of malonaldehyde and the activity of two antioxidant enzymes, Cu/Zn-superoxide dismutase and catalase, by spectrophotometric assays.
Background: Oxidative stress is implicated in pathogenesis of alcoholic liver disease (ALD). This study investigated the possible correlation among the erythrocyte indices of oxidative stress, the leukocyte panels of antioxidant proteins (metallothioneins), the serum biochemical parameters and the liver steatosis grade.
Methods: A total of 118 cases including 60 alcoholic subjects and 58 controls were enrolled.
Background/aims: Fatty acids are the main energy stores and the major membrane components of the cells. In the hepatocyte, fatty acids are esterified to triacylglycerols (TAGs) and stored in lipid droplets (LDs). The lipid lowering action of 3,5-diiodo-L-thyronine (T2) on an in vitro model of hepatosteatosis was investigated in terms of fatty acid and protein content of LDs, lipid oxidation and secretion.
View Article and Find Full Text PDFExcess fat accumulation renders the liver more vulnerable to ethanol, but it is still unclear how alcohol enhances lipid dysmetabolism and oxidative stress in a pre-existing steatosis condition. The effects produced by binge ethanol consumption in the liver of male Wistar rats fed a standard (Ctrl) or a high-fat diet HFD were compared. The liver status was checked through tissue histology and standard serum parameters.
View Article and Find Full Text PDFAmyotrophic lateral sclerosis (ALS) is a late-onset fatal neurodegenerative disease reflecting degeneration of upper and lower motoneurons (MNs). The cause of ALS and the mechanisms of neuronal death are still largely obscure, thus impairing the establishment of efficacious therapies. Glutamate (Glu)-mediated excitotoxicity plays a major role in MN degeneration in ALS.
View Article and Find Full Text PDFBisphenol A (BPA), used in the manufacture of polycarbonate plastic and epoxy resin, is one of the most abundant endocrine disruptors in the environment, considered as a xenoestrogen. BPA has recently become of additional public health concern because of increasing evidence of deleterious effects on metabolism. Dietary intake seems the most important route for BPA exposure, followed by rapid biotransformation in the gut and liver and elimination in the urine.
View Article and Find Full Text PDFDespite some advances in the understanding of amyotrophic lateral sclerosis (ALS) pathogenesis, significant achievements in treating this disease are still lacking. Mesenchymal stromal (stem) cells (MSCs) have been shown to be effective in several models of neurological disease. To determine the effects of the intravenous injection of MSCs in an ALS mouse model during the symptomatic stage of disease, MSCs (1 × 10⁶) were intravenously injected in mice expressing human superoxide dismutase 1 (SOD1) carrying the G93A mutation (SOD1/G93A) presenting with experimental ALS.
View Article and Find Full Text PDF