In this paper, we introduce the design and manufacturing process of a transtibial orthopedic implant. We used medical-grade polyurethane polymer resin to fabricate a 3D porous architected implant with tunable isotropy, employing a high-speed printing method known as Continuous Liquid Interface Production (CLIP). Our objective is to enhance the weight-bearing capabilities of the bone structures in the residual limb, thereby circumventing the traditional reliance on a natural bridge.
View Article and Find Full Text PDFDiagnostics (Basel)
January 2024
COVID-19 made explicit the need for rethinking the way in which we conduct testing for epidemic emergencies. During the COVID-19 pandemic, the dependence on centralized lab facilities and resource-intensive methodologies (e.g.
View Article and Find Full Text PDFThis paper presents an integrated monitoring system for the driver and the vehicle in a single case of study easy to configure and replicate. On-board vehicle sensors and remote sensors are combined to model algorithms for estimating polluting emissions, fuel consumption, driving style and driver's health. The main contribution of this paper is the analysis of interactions among the above monitored features highlighting the influence of the driver in the vehicle performance and vice versa.
View Article and Find Full Text PDFHuman skin is characterized by rough, elastic, and uneven features that are difficult to recreate using conventional manufacturing technologies and rigid materials. The use of soft materials is a promising alternative to produce devices that mimic the tactile capabilities of biological tissues. Although previous studies have revealed the potential of fillers to modify the properties of composite materials, there is still a gap in modeling the conductivity and mechanical properties of these types of materials.
View Article and Find Full Text PDFThe strategy of embedding conductive materials on polymeric matrices has produced functional and wearable artificial electronic skin prototypes capable of transduction signals, such as pressure, force, humidity, or temperature. However, these prototypes are expensive and cover small areas. This study proposes a more affordable manufacturing strategy for manufacturing conductive layers with 6 × 6 matrix micropatterns of RTV-2 silicone rubber and Single-Walled Carbon Nanotubes (SWCNT).
View Article and Find Full Text PDFThis study presents a neuroengineering-based machine learning tool developed to predict students' performance under different learning modalities. Neuroengineering tools are used to predict the learning performance obtained through two different modalities: text and video. Electroencephalographic signals were recorded in the two groups during learning tasks, and performance was evaluated with tests.
View Article and Find Full Text PDF