In the present study, chitosan and chitosan/turmeric-based membranes were produced, characterized and applied in in vivo experiments showing the applicability for skin wound repair. Chitosan 1 % (w/v), chitosan + glycerol 30 % (w/w) and chitosan + glycerol 30 % + turmeric 1.5 % (w/w) membranes were produced through the casting technique.
View Article and Find Full Text PDFJ Funct Biomater
August 2023
The use of bioactive materials, such as L., to stimulate the bone repair process has already been studied; however, the synergistic effects of its association with light emitting diode (LED) have not been reported. The present work aims to evaluate the effect of its stem bark extract incorporated into methacrylate gelatin hydrogel (GelMA) on the bone repair process using pure hydrogel and hydrogel associated with LED therapy.
View Article and Find Full Text PDFChitosan is a biopolymer that, due to its versatile bioactive properties, has applications in several areas, including food, medicine and pharmaceuticals. In the field of tissue engineering, chitosan can be used, for example, as a dressing to treat wounds or dermal damage, such as burns or abrasions. This work deals with the controlled release of tea tree oil from chitosan-based polymeric films and droplets containing gold nanoparticles (AuNP).
View Article and Find Full Text PDFSensors and biosensors play a key role as an analytical tool for the rapid, reliable, and early diagnosis of human diseases. Such devices can also be employed for monitoring environmental pollutants in air and water in an expedited way. More recently, nanomaterials have been proposed as an alternative in sensor fabrication to achieve gains in performance in terms of sensitivity, selectivity, and portability.
View Article and Find Full Text PDFThe present work reports the development of chitosan-based films for application as protective layer for natural foods such as fruits and vegetables. Chitosan is a biopolymer known for its antibacterial and antifungal properties that when combined with its biocompatibility and biodegradability can be widely applied in areas such as cosmetic, pharmaceutical and food industry. In this work, thin films based on chitosan were obtained by the drop-casting method using glycerol to enhance elasticity and hydrophobic character.
View Article and Find Full Text PDFThe demand for wearable sensors has grown rapidly in recent years, with increasing attention being given to epidermal chemical sensing. Here, we present the first example of a fully integrated eyeglasses wireless multiplexed chemical sensing platform capable of real-time monitoring of sweat electrolytes and metabolites. The new concept has been realized by integrating an amperometric lactate biosensor and a potentiometric potassium ion-selective electrode into the two nose-bridge pads of the glasses and interfacing them with a wireless electronic backbone placed on the glasses' arms.
View Article and Find Full Text PDFJ Mater Chem A Mater
December 2016
Highly stretchable textile-based biofuel cells (BFCs), acting as effective self-powered sensors, have been fabricated using screen-printing of customized stress-enduring inks. Due to synergistic effects of nanomaterial-based engineered inks and the serpentine designs, these printable bioelectronic devices endure severe mechanical deformations, e.g.
View Article and Find Full Text PDFIn this paper, we show that chitosan may induce conformation changes in silk fibroin (SF) in layer-by-layer (LbL) films, which were used as matrix for immobilization of the enzyme phytase to detect phytic acid. Three chitosan (CH) samples possessing distinct molecular weights were used to build CH/SF LbL films, and a larger change in conformation from random coils to β-sheets for SF was observed for high molecular weight chitosan (CHH). The CHH/SF LbL films deposited onto interdigitated gold electrodes were coated with a layer of phytase, with which phytic acid could be detected down to 10M using impedance spectroscopy as the principle of detection and treating the data with a multidimensional projection technique.
View Article and Find Full Text PDFControl over the catalytic activity of enzymes is important to construct biosensors with a wide range of detectability and higher stability. For this, immobilization of enzymes on solid supports as nanostructured films is a current approach that permits easy control of the molecular architecture as well as tuning of the properties. In this article, we employed acylated carrageenan (AC) mixed with phospholipids at the air-water interface to facilitate the adsorption of the enzyme sucrose phosphorylase (SP).
View Article and Find Full Text PDFThe interaction between chitosans and Langmuir monolayers mimicking cell membranes has been explained with an empirical scheme based on electrostatic and hydrophobic forces, but so far this has been tested only for dimyristoyl phosphatidic acid (DMPA). In this paper, we show that the mode of action in such a scheme is also valid for dipalmitoyl phosphatidyl choline (DPPC) and dipalmitoyl phosphatidyl glycerol (DPPG), whose monolayers were expanded and their compressibility modulus decreased by interacting with chitosans. In general, the effects were stronger for the negatively charged DPPG in comparison to DPPC, and for the low molecular weight chitosan (LMWChi) which was better able to penetrate into the hydrophobic chains than the high molecular weight chitosan (Chi).
View Article and Find Full Text PDFThe use of nanomaterials as an electroactive medium has improved the performance of bio/chemical sensors, particularly when synergy is reached upon combining distinct materials. In this paper, we report on a novel architecture comprising electrospun polyamide 6/poly(allylamine hydrochloride) (PA6/PAH) nanofibers functionalized with multiwalled carbon nanotubes, used to detect the neurotransmitter dopamine (DA). Miscibility of PA6 and PAH was sufficient to form a single phase material, as indicated by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC), leading to nanofibers with no beads onto which the nanotubes could adsorb strongly.
View Article and Find Full Text PDFOne of the major challenges in establishing the mechanisms responsible for the chitosan action in biomedical applications lies in the determination of the molecular-level interactions with the cell membrane. In this study, we probed hydrophobic interactions and H-bonding in experiments with O,O'-diacetylchitosan (DACT) and O,O'-dipropionylchitosan (DPPCT) incorporated into monolayers of distinct phospholipids, the zwitterionic dipalmitoyl phosphatidyl choline (DPPC), and the negatively charged dipalmitoyl phosphatidyl glycerol (DPPG) and dimyristoyl phosphatidic acid (DMPA). The importance of hydrophobic interactions was confirmed with the larger effects observed for DACT and DPPCT than for parent chitosan (Chi), particularly for the more hydrophobic DPPCT.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
April 2013
The influence from the chitosan molecular weight on its interaction with cell membrane models has been studied. A low molecular weight chitosan (LMWChi) adsorbed from the subphase expanded the surface pressure-area and surface potential-area isotherms of dimyristoyl phosphatidic acid (DMPA) monolayers and decreased the compressional modulus. The expansion in the monolayers and the decrease in the compressional modulus were larger for LMWChi than for a high molecular weight chitosan (Chi).
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2010
Recent studies involving chitosan interacting with phospholipid monolayers that mimic cell membranes have brought molecular-level evidence for some of the physiological actions of chitosan, as in removing a protein from the membrane. This interaction has been proven to be primarily of electrostatic origin because of the positive charge of chitosan in low pH solutions, but indirect evidence has also appeared of the presence of hydrophobic interactions. In this study, we provide definitive proof that model membranes are not affected merely by the charges in the amine groups of chitosan.
View Article and Find Full Text PDFThe interaction between chitosan and Langmuir and Langmuir-Blodgett (LB) films of dimyristoyl phosphatidic acid (DMPA) is investigated, with the films serving as simplified cell membrane models. At the air-water interface, chitosan modulates the structural properties of DMPA monolayers, causing expansion and decreasing the monolayer elasticity. As the surface pressure increased, some chitosan molecules remained at the interface, but others were expelled.
View Article and Find Full Text PDFIn this paper we employed phospholipid Langmuir monolayers as membrane models to probe interactions with chitosan. Using a combination of surface pressure--area and surface potential--area isotherms and rheological measurements with the pendent drop technique, we observed that chitosan interacts with phospholipid molecules at the air-water interface. We propose a model in which chitosan interacts with the phospholipids mainly through electrostatic interactions, but also including H-bonding and hydrophobic forces, depending on the phospholipid packing density.
View Article and Find Full Text PDF