Publications by authors named "Adriana Maria de Almeida"

The mechanism of colonisation of the chicken intestine by Salmonella remains poorly understood, while the severity of infections vary enormously depending on the serovar and the age of the bird. Several metabolism and virulence genes have been identified in Salmonella Heidelberg; however, information on their roles in infection, particularly in the chicken infection model, remains scarce. In the present publication, we investigated three Salmonella Heidelberg mutants containing deletions in misL, ssa, and pta-ackA genes by using signature-tagged mutagenesis.

View Article and Find Full Text PDF

Salmonella Gallinarum (SG) provokes fowl typhoid, an infectious disease of acute clinical course that affects gallinaceous of any age and leads to high mortality rates. During the typhoid-like systemic infection of S. Typhimurium (STM) in mice, the bacterium expresses the mgtC gene, which is encoded in the Salmonella Pathogenecity Island - 3 (SPI-3).

View Article and Find Full Text PDF

The incorrect use of conventional drugs for both prevention and control of intestinal infections has contributed to a significant spread of bacterial resistance. In this way, studies that promote their replacement are a priority. In the last decade, the use of antimicrobial peptides (AMP), especially Ctx(Ile)-Ha AMP, has gained strength, demonstrating efficient antimicrobial activity (AA) against pathogens, including multidrug-resistant bacteria.

View Article and Find Full Text PDF

Among the important recent observations involving anaerobic respiration was that an electron acceptor produced as a result of an inflammatory response to Salmonella Typhimurium generates a growth advantage over the competing microbiota in the lumen. In this regard, anaerobically, salmonellae can oxidize thiosulphate (SO) converting it into tetrathionate (SO), the process by which it is encoded by ttr gene cluster (ttrSRttrBCA). Another important pathway under aerobic or anaerobic conditions is the 1,2-propanediol-utilization mediated by the pdu gene cluster that promotes Salmonella expansion during colitis.

View Article and Find Full Text PDF

Salmonella Enteritidis (SE) is a major cause of foodborne diseases in humans being frequently related to the consumption of poultry products. Therefore, guaranteeing early immunity to chicks is an important tool to prevent the colonization and infection by this pathogen. The present study evaluated the effectiveness of a candidate recombinant vaccine against SE.

View Article and Find Full Text PDF

Salmonella Enteritidis causes infections in humans and animals which are often associated with extensive gut colonization and bacterial shedding in faeces. The natural presence of flagella in Salmonella enterica has been shown to be enough to induce pro-inflammatory responses in the gut, resulting in recruitment of polymorphonuclear cells, gut inflammation and, consequently, reducing the severity of systemic infection in chickens. On the other hand, the absence of flagellin in some Salmonella strains favours systemic infection as a result of the poor intestinal inflammatory responses elicited.

View Article and Find Full Text PDF

Gallinarum (SG) is an avian-restricted pathogen that causes fowl typhoid in poultry. Although it has been reported frequently over many decades in poultry flocks worldwide, the microorganism is more commonly associated with poultry in developing countries, particularly those with high ambient temperatures, where the acute form of the disease results in considerable economic losses. A more detailed investigation of environmental factors that affect the course of disease may assist in identifying effective prevention and control measures.

View Article and Find Full Text PDF

The diseases caused by Salmonella Gallinarum and S. Pullorum in chickens known as fowl typhoid and pullorum disease, respectively, pose a great threat to the poultry industry mainly in developing countries, since they have already been controlled in the developed ones. These bacteria are very similar at the genomic level but develop distinct host-pathogen relationships with chickens.

View Article and Find Full Text PDF

Salmonella Gallinarum is a host-restrict pathogen that causes fowl typhoid, a severe systemic disease that is one of the major concerns to the poultry industry worldwide. When infecting the bird, SG makes use of evasion mechanisms to survive and to replicate within macrophages. In this context, phoPQ genes encode a two-component regulatory system (PhoPQ) that regulates virulence genes responsible for adaptation of Salmonella spp.

View Article and Find Full Text PDF

Salmonella Enteritidis causes fowl paratyphoid in poultry and is frequently associated to outbreaks of food-borne diseases in humans. The role of flagella and flagella-mediated motility into host-pathogen interplay is not fully understood and requires further investigation. In this study, one-day-old chickens were challenged orally with a wild-type strain Salmonella Enteritidis, a non-motile but fully flagellated (SE ΔmotB) or non-flagellated (SE ΔfliC) strain to evaluate their ability to colonise the intestine and spread systemically and also of eliciting gross and histopathological changes.

View Article and Find Full Text PDF

Currently there are 2659 Salmonella serovars. The host-specific biovars Salmonella Pullorum and Salmonella Gallinarum cause systemic infections in food-producing and wild birds. Fast diagnosis is crucial to control the dissemination in avian environments.

View Article and Find Full Text PDF

Salmonella Gallinarum (SG) causes fowl typhoid (FT), a disease responsible for economic losses to the poultry industry worldwide. FT has been considered to be under control in Brazil; nevertheless, since 2012 it has frequently been identified in poultry farming of several Brazilian states. The present study was aimed at assessing (i) the pathogenicity of a SG strain recently isolated from an FT outbreak affecting chickens of both white and brown layers; (ii) the transmission of SG through eggs and hatching; (iii) the effects of antibiotic therapy on SG persistence in poultry tissues and on its vertical transmission and (iv) the genetic profiles of strains isolated over 27 years by Pulsed Field Gel Electrophoresis.

View Article and Find Full Text PDF

Salmonella enterica subsp. enterica serovar Gallinarum biovar Gallinarum (S Gallinarum) and biovar Pullorum (S Pullorum) are 2 poultry pathogens that cause major economic losses to the poultry industry worldwide. Control of both diseases mainly relies on the adoption of biosecurity programs, and success is dependent on accurate and fast detection.

View Article and Find Full Text PDF

Salmonella Gallinarum (SG) and Salmonella Pullorum (SP) have been classified as biovars belonging to Salmonella enterica subsp. enterica serovar Gallinarum. Genetic diversity among isolates of the same biovar can be detected by DNA fingerprinting techniques which are useful in epidemiological investigations.

View Article and Find Full Text PDF

Obesity and osteoporosis are chronic disorders with increasing prevalence worldwide. The aim of this study was to investigate the association between obesity and fracture in postmenopausal women from Santa Maria, Brazil. A cross-sectional study was carried out at Santa Maria (parallel 29° south), Brazil.

View Article and Find Full Text PDF

Salmonella Pullorum and Salmonella Gallinarum are classified as biovars of Salmonella enterica subsp. enterica serovar Gallinarum. These salmonellae are the causative agents of Pullorum disease and fowl typhoid, respectively, and are widely distributed throughout the world.

View Article and Find Full Text PDF

The poultry industry has a high demand for Salmonella vaccines in order to generate safer Salmonella-free food for consumers around the world. Vaccination against S. Enteritidis (SE) is vastly undertaken in many countries, although the criteria for the use of live vaccine (LV) or killed vaccine (KV) should also depend on the immune mechanisms triggered by each.

View Article and Find Full Text PDF

The ideal live vaccine to control Salmonella in commercial chicken flocks should engender protection against various strains. The purpose of the present study was to confirm the attenuation of a Salmonella Gallinarum (SG) mutant strain with deletion on genes cobS and cbiA, that are involved in the biosynthesis of cobalamin. Furthermore, evaluate its use as a live vaccine against Salmonella.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionn1rgm42ks2sv0poapu2coo5196cl29l2): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once