Publications by authors named "Adriana Maggi"

Background & Aims: The loss of ovarian functions defining menopause leads to profound metabolic changes and heightens the risk of developing metabolic dysfunction-associated steatotic liver disease (MASLD). Although estrogens primarily act on the female liver through estrogen receptor alpha (ERα), the specific contribution of impaired ERα signaling in triggering MASLD after menopause remains unclear.

Methods: To address this gap in knowledge, we compared the liver transcriptomes of sham-operated (SHAM) and ovariectomized (OVX) control and liver ERα knockout (LERKO) female mice by performing RNA-Seq analysis.

View Article and Find Full Text PDF

Microglia are heterogenous cells characterized by distinct populations each contributing to specific biological processes in the nervous system, including neuroprotection. To elucidate the impact of sex-specific microglia heterogenicity to the susceptibility of neuronal stress, we video-recorded with time-lapse microscopy the changes in shape and motility occurring in primary cells derived from mice of both sexes in response to pro-inflammatory or neurotoxic stimulations. With this morpho-functional analysis, we documented distinct microglia subpopulations eliciting sex-specific responses to stimulation: male microglia tended to have a more pro-inflammatory phenotype, while female microglia showed increased sensitivity to conduritol-B-epoxide (CBE), a small molecule inhibitor of glucocerebrosidase, the enzyme encoded by the GBA1 gene, mutations of which are the major risk factor for Parkinson's Disease (PD).

View Article and Find Full Text PDF

Non-alcoholic fatty liver disease (NAFLD) represents a public health issue, due to its prevalence and association with other cardiometabolic diseases. Growing evidence suggests that NAFLD alters the production of hepatokines, which, in turn, influence several metabolic processes. Despite accumulating evidence on the major role of estrogen signaling in the sexually dimorphic nature of NAFLD, dependency of hepatokine expression on sex and estrogens has been poorly investigated.

View Article and Find Full Text PDF

We previously demonstrated that Npy1r mice, which carry the conditional inactivation of the gene in forebrain principal neurons, display a sexually dimorphic phenotype, with male mice showing metabolic, hormonal and behavioral effects and females being only marginally affected. Moreover, exposure of Npy1r male mice to a high-fat diet (HFD) increased body weight growth, adipose tissue, blood glucose levels and caloric intake compared to Npy1r male controls. We used conditional knockout Npy1r and Npy1r control mice to examine whether forebrain disruption of the gene affects susceptibility to obesity and associated disorders of cycling and ovariectomized (ovx) female mice in a standard diet (SD) regimen or exposed to an HFD for 3 months.

View Article and Find Full Text PDF

In female mammals, the cessation of ovarian functions is associated with significant metabolic alterations, weight gain, and increased susceptibility to a number of pathologies associated with ageing. The molecular mechanisms triggering these systemic events are unknown because most tissues are responsive to lowered circulating sex steroids. As it has been demonstrated that isoform alpha of the estrogen receptor (ERα) may be activated by both estrogens and amino acids, we test the metabolic effects of a diet enriched in specific amino acids in ovariectomized (OVX) mice.

View Article and Find Full Text PDF

The number of studies illuminating major sex differences in liver metabolic activities is growing, but we still lack a theory to explain the origin of the functional differences we are identifying. In the animal kingdom, energy metabolism is tightly associated with reproduction; conceivably, the major evolutionary step that occurred about 200 million years ago with placentation determined a significant change in female physiology, as females had to create new energy strategies to allow the growth of the embryo in the womb and the lactation of the newborn. In vertebrates the liver is the metabolic organ most tuned to gonadal functions because the liver synthesizes and transports of all the components necessary for the maturation of the egg upon estrogenic stimulation.

View Article and Find Full Text PDF

Sex differences in immune-mediated diseases are linked to the activity of estrogens on innate immunity cells, including macrophages. Tamoxifen (TAM) is a selective estrogen receptor modulator (SERM) used in estrogen receptor-alpha (ERα)-dependent breast cancers and off-target indications such as infections, although the immune activity of TAM and its active metabolite, 4-OH tamoxifen (4HT), is poorly characterized. Here, we aimed at investigating the endocrine and immune activity of these SERMs in macrophages.

View Article and Find Full Text PDF

Background: Homozygotic mutations in the GBA gene cause Gaucher's disease; moreover, both patients and heterozygotic carriers have been associated with 20- to 30-fold increased risk of developing Parkinson's disease. In homozygosis, these mutations impair the activity of β-glucocerebrosidase, the enzyme encoded by GBA, and generate a lysosomal disorder in macrophages, which changes morphology towards an engorged phenotype, considered the hallmark of Gaucher's disease. Notwithstanding the key role of macrophages in this disease, most of the effects in the brain have been attributed to the β-glucocerebrosidase deficit in neurons, while a microglial phenotype for these mutations has never been reported.

View Article and Find Full Text PDF

The metabolic and immune adaptation to extracellular signals allows macrophages to carry out specialized functions involved in immune protection and tissue homeostasis. Nuclear factor erythroid 2-related factor 2 (NRF2) is a transcription factor that coordinates cell redox and metabolic responses to stressors. However, the individual and concomitant activation of NRF2 and inflammatory pathways have been poorly investigated in isolated macrophages.

View Article and Find Full Text PDF

Women are more prone than men to develop age-related dementia, such as Alzheimer's disease (AD). This has been linked to the marked decrease in circulating estrogens during menopause. This review proposes to change this perspective and consider women's vulnerability to developing AD as a consequence of sex differences in the neurobiology of memory, focusing on the hippocampus.

View Article and Find Full Text PDF

Objective: Among obesity-associated metabolic diseases, non-alcoholic fatty liver disease (NAFLD) represents an increasing public health issue due to its emerging association with atherogenic dyslipidemia and cardiovascular diseases (CVDs). The lower prevalence of NAFLD in pre-menopausal women compared with men or post-menopausal women led us to hypothesize that the female-inherent ability to counteract this pathology might strongly rely on estrogen signaling. In female mammals, estrogen receptor alpha (ERα) is highly expressed in the liver, where it acts as a sensor of the nutritional status and adapts the metabolism to the reproductive needs.

View Article and Find Full Text PDF

Neurodegenerative diseases (NDs) are a wide class of disorders of the central nervous system (CNS) with unknown etiology. Several factors were hypothesized to be involved in the pathogenesis of these diseases, including genetic and environmental factors. Many of these diseases show a sex prevalence and sex steroids were shown to have a role in the progression of specific forms of neurodegeneration.

View Article and Find Full Text PDF

Background: Nonsteroidal anti-inflammatory drugs (NSAIDs) have been proposed as chemopreventive agents for many tumours; however, the mechanism responsible for their anti-neoplastic activity remains elusive and the side effects due to cyclooxygenase (COX) inhibition prevent this clinical application.

Methods: Molecular biology, in silico, cellular and in vivo tools, including innovative in vivo imaging and classical biochemical assays, were applied to identify and characterise the COX-independent anti-cancer mechanism of NSAIDs.

Results: Here, we show that tumour-protective functions of NSAIDs and exisulind (a sulindac metabolite lacking anti-inflammatory activity) occur through a COX-independent mechanism.

View Article and Find Full Text PDF

Microglia are potential targets for therapeutic intervention in neurological and neurodegenerative diseases affecting the central nervous system. In order to assess the efficacy of therapies aimed to reduce the tissue damaging activities of microglia and/or to promote the protective potential of these cells, suitable pre-clinical and clinical tools for the analysis of microglia activities and dynamics are required. The aim of this work was to identify new translational markers of the anti-inflammatory / protective state of microglia for the development of novel PET tracers.

View Article and Find Full Text PDF

Sex plays a role in the incidence and outcome of neurological illnesses, also influencing the response to treatments. Despite sexual differentiation of the brain has been extensively investigated, the study of sex differences in microglia, the brain's resident immune cells, has been largely neglected until recently. To fulfill this gap, our laboratory developed several tools, including cellular and animal models, which bolstered in-depth studies on sexual differentiation of microglia and its impact on brain physiology, as well as on the onset and progression of neurological disorders.

View Article and Find Full Text PDF

Background: Estrogens are known to orchestrate reproductive events and to regulate the immune system during infections and following tissue damage. Recent findings suggest that, in the absence of any danger signal, estrogens trigger the physiological expansion and functional specialization of macrophages, which are immune cells that populate the female reproductive tract (FRT) and are increasingly being recognized to participate in tissue homeostasis beyond their immune activity against infections. Although estrogens are the only female gonadal hormones that directly target macrophages, a comprehensive view of this endocrine-immune communication and its involvement in the FRT is still missing.

View Article and Find Full Text PDF

Oestrogens are well-known proliferation and differentiation factors that play an essential role in the correct development of sex-related organs and behaviour in mammals. With the use of the ERE-Luc reporter mouse model, we show herein that throughout mouse development, oestrogen receptors (ERs) are active starting from day 12 post conception. Most interestingly, we show that prenatal luciferase expression in each organ is proportionally different in relation to the germ layer of the origin.

View Article and Find Full Text PDF

Sex has a role in the incidence and outcome of neurological illnesses, also influencing the response to treatments. Neuroinflammation is involved in the onset and progression of several neurological diseases, and the fact that estrogens have anti-inflammatory activity suggests that these hormones may be a determinant in the sex-dependent manifestation of brain pathologies. We describe significant differences in the transcriptome of adult male and female microglia, possibly originating from perinatal exposure to sex steroids.

View Article and Find Full Text PDF

Sex impacts on liver physiology with severe consequences for energy metabolism and response to xenobiotic, hepatic, and extra-hepatic diseases. The comprehension of the biology subtending sex-related hepatic differences is therefore very relevant in the medical, pharmacological, and dietary perspective. The extensive application of metabolomics paired to transcriptomics here shows that, in the case of short-term fasting, the decision to maintain lipid synthesis using amino acids (aa) as a source of fuel is the key discriminant for the hepatic metabolism of male and female mice.

View Article and Find Full Text PDF

The P2X receptor plays a significant role in microglial activation, and as a potential drug target, the P2X receptor is also an interesting target in positron emission tomography. The current study aimed at the development and evaluation of a potent tracer targeting the P2X receptor, to which end four adamantanyl benzamide analogues with high affinity for the human P2X receptor were labelled with carbon-11. All four analogues could be obtained in excellent radiochemical yield and high radiochemical purity and molar activity, and all analogues entered the rat brain.

View Article and Find Full Text PDF

Background: Epidemiological and clinical studies have largely demonstrated major differences in the prevalence of metabolic disorders in males and females, but the biological cause of these dissimilarities remain to be elucidated. Mammals are characterized by a major change in reproductive strategies and it is conceivable that these changes subjected females to a significant evolutionary pressure that perfected the coupling between energy metabolism and reproduction.

Scope Of Review: This review will address the plausibility that female liver functions diverged significantly from males given the role of liver in the control of metabolism.

View Article and Find Full Text PDF

The Parkinson's disease (PD) evolves over an extended period of time with the onset occurring long before clinical signs begin to manifest. Characterization of the molecular events underlying the PD onset is instrumental for the development of diagnostic markers and preventive treatments, progress in this field is hindered by technical limitations. We applied an imaging approach to demonstrate the activation of Nrf2 transcription factor as a hallmark of neurodegeneration in neurotoxin-driven models of PD.

View Article and Find Full Text PDF

Recent studies have demonstrated that in mice, the estrogen receptor alpha (ERα) is expressed in the liver and has a direct effect on the regulation of the hepatic genes relevant for energy metabolism and drug metabolism. The sex-related differential expression of the hepatic ERα raises the questions as to whether this receptor is responsible for the sexual differences observed in the physiopathology of the liver.

View Article and Find Full Text PDF

Background: Microglia are resident myeloid cells of the central nervous system (CNS) that are maintained by self-renewal and actively participate in tissue homeostasis and immune defense. Under the influence of endogenous or pathological signals, microglia undertake biochemical transformations that are schematically classified as the pro-inflammatory M1 phenotype and the alternatively activated M2 state. Dysregulated proliferation of M1-activated microglia has detrimental effects, while an increased number of microglia with the alternative, pro-resolving phenotype might be beneficial in brain pathologies; however, the proliferative response of microglia to M2 signals is not yet known.

View Article and Find Full Text PDF

Estrogen deprivation is associated with delayed healing, while estrogen replacement therapy (ERT) accelerates acute wound healing and protects against development of chronic wounds. However, current estrogenic molecules have undesired systemic effects, thus the aim of our studies is to generate new molecules for topic administration that are devoid of systemic effects. Following a preliminary study, the new 17β-estradiol derivatives 1 were synthesized.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessione7drhhmefm9r931g3klniasrs22uommc): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once