Publications by authors named "Adriana M Jeckel"

Herbivorous insects encounter diverse plant specialized metabolites (PSMs) in their diet, that have deterrent, anti-nutritional, or toxic properties. Understanding how they cope with PSMs is crucial to understand their biology, population dynamics, and evolution. This review summarizes current and emerging cutting-edge methods that can be used to characterize the metabolic fate of PSMs, from ingestion to excretion or sequestration.

View Article and Find Full Text PDF

Sequestration of chemical defenses from dietary sources is dependent on the availability of compounds in the environment and the mechanism of sequestration. Previous experiments have shown that sequestration efficiency varies among alkaloids in poison frogs, but little is known about the underlying mechanism. The aim of this study was to quantify the extent to which alkaloid sequestration and modification are dependent on alkaloid availability and/or sequestration mechanism.

View Article and Find Full Text PDF

Ambient mass spectrometry is useful for analyzing compounds that would be affected by other chemical procedures. Poison frogs are known to sequester alkaloids from their diet, but the sequestration pathway is unknown. Here, we describe methods for whole-body cryosectioning of frogs and use desorption electrospray ionization mass spectrometry imaging (DESI-MSI) to map the orally administered alkaloid histrionicotoxin 235A in a whole-body section of the poison frog Dendrobates tinctorius.

View Article and Find Full Text PDF

Introduction: Amphibians secrete a wide diversity of chemicals from skin glands as defense against predators, parasites, and pathogens. Most defensive chemicals are produced endogenously through biosynthesis, but poison frogs sequester lipophilic alkaloids from dietary arthropods. Alkaloid composition varies greatly, even among conspecific individuals collected at the same time and place, with some individuals having only a few micrograms of one or a few alkaloids and others possessing >1 mg of >30 alkaloids.

View Article and Find Full Text PDF

Bufonid poison frogs of the genus Melanophryniscus contain alkaloid-based chemical defenses that are derived from a diet of alkaloid-containing arthropods. In addition to dietary alkaloids, bufadienolide-like compounds and indolealkylamines have been identified in certain species of Melanophryniscus. Our study reports, for the first time, the co-occurrence of large quantities of both alkaloids sequestered from the diet and an endogenously biosynthesized indolalkylamine in skin secretions from individual specimens of Melanophryniscus moreirae from Brazil.

View Article and Find Full Text PDF