Publications by authors named "Adriana Golding"

ARL5 is a member of the ARF family of small GTPases that is recruited to the trans-Golgi network (TGN) by another ARF-family member, ARFRP1, in complex with the transmembrane protein SYS1. ARL5 recruits its effector, the multisubunit tethering complex GARP, to promote SNARE-dependent fusion of endosome-derived retrograde transport carriers with the TGN. To further investigate the function of ARL5, we sought to identify additional effectors.

View Article and Find Full Text PDF

The Rho GTPases pattern the cell cortex in a variety of fundamental cell-morphogenetic processes including division, wound repair, and locomotion. It has recently become apparent that this patterning arises from the ability of the Rho GTPases to self-organize into static and migrating spots, contractile pulses, and propagating waves in cells from yeasts to mammals . These self-organizing Rho GTPase patterns have been explained by a variety of theoretical models which require multiple interacting positive and negative feedback loops.

View Article and Find Full Text PDF

Introduction/aims: Individuals with dysferlinopathies, a group of genetic muscle diseases, experience delay in the onset of muscle weakness. The cause of this delay and subsequent muscle wasting are unknown, and there are currently no clinical interventions to limit or prevent muscle weakness. To better understand molecular drivers of dysferlinopathies, age-dependent changes in the proteomic profile of skeletal muscle (SM) in wild-type (WT) and dysferlin-deficient mice were identified.

View Article and Find Full Text PDF

Rho GTPases such as Rho, Rac, and Cdc42 are important regulators of the cortical cytoskeleton in processes including cell division, locomotion, and repair. In these processes, Rho GTPases assume characteristic patterns wherein the active GTPases occupy mutually exclusive "zones" in the cell cortex. During cell wound repair, for example, a Rho zone encircles the wound edge and is in turn encircled by a Cdc42 zone.

View Article and Find Full Text PDF

The RhoGTPases are characterized as membrane-associated molecular switches that cycle between active, GTP-bound and inactive, GDP-bound states. However, 90-95% of RhoGTPases are maintained in a soluble form by RhoGDI, which is generally viewed as a passive shuttle for inactive RhoGTPases. Our current understanding of RhoGTPase:RhoGDI dynamics has been limited by two experimental challenges: direct visualization of the RhoGTPases in vivo and reconstitution of the cycle in vitro.

View Article and Find Full Text PDF

Rho GTPases are regulatory proteins whose patterns on the surface of a cell affect cell polarization, cell motility and repair of single-cell wounds. The stereotypical patterns formed by two such proteins, Rho and Cdc42, around laser-injured frog oocytes permit experimental analysis of GTPase activation, inactivation, segregation and crosstalk. Here, we review the development and analysis of a spatial model of GTPase dynamics that describe the formation of concentric zones of Rho and Cdc42 activity around wounds, and describe how this model has provided insights into the roles of the GTPase effector molecules protein kinase C (PKCβ and PKCη) and guanosine nucleotide dissociation inhibitor (GDI) in the wound response.

View Article and Find Full Text PDF

Cell repair is attracting increasing attention due to its conservation, its importance to health, and its utility as a model for cell signaling and cell polarization. However, some of the most fundamental questions concerning cell repair have yet to be answered. Here we consider three such questions: (1) How are wound holes stopped? (2) How is cell regeneration achieved after wounding? (3) How is calcium inrush linked to wound stoppage and cell regeneration?

View Article and Find Full Text PDF

Animal cell cytokinesis results from patterned activation of the small GTPase Rho, which directs assembly of actomyosin in the equatorial cortex. Cytokinesis is restricted to a portion of the cell cycle following anaphase onset in which the cortex is responsive to signals from the spindle. We show that shortly after anaphase onset oocytes and embryonic cells of frogs and echinoderms exhibit cortical waves of Rho activity and F-actin polymerization.

View Article and Find Full Text PDF

There are 1,111 species of pholcid spiders, of which less than 2% have published karyotypes. Our aim in this study was to determine the karyotypes and sex determination mechanisms of two species of pholcids: Physocyclus mexicanus (Banks, 1898) and Holocnemus pluchei (Scopoli, 1763), and to observe sex chromosome behavior during meiosis. We constructed karyotypes for P.

View Article and Find Full Text PDF