High-affinity cellular copper uptake is mediated by the CTR (copper transporter) 1 family of proteins. The highly homologous hCTR (human CTR) 2 protein has been identified, but its function in copper uptake is currently unknown. To characterize the role of hCTR2 in copper homoeostasis, epitope-tagged hCTR2 was transiently expressed in different cell lines.
View Article and Find Full Text PDFBackground/aims: Copper toxicosis (CT) in Bedlington terriers is an autosomal recessive disorder characterized by massive lysosomal copper accumulation in livers of affected dogs, and a defect in the biliary excretion of this metal. We propose that MURR1, the gene defective in canine CT, has a role in the regulation of copper excretion into bile during copper overload.
Methods: Polyclonal antibodies raised against full-length recombinant human MURR1 were used for immunoblot analysis and indirect immunofluorescence studies.
We have used indirect immunofluorescense studies and glycosylation-site insertion and deletion mapping to characterize the topology of human copper transporter 1 (hCTR1), the putative human high-affinity copper-import protein. Both approaches indicated that hCTR1 contains three transmembrane domains and that the N-terminus of hCTR1, which contains several putative copper-binding sites, is localized extracellularly, whereas the C-terminus is exposed to the cytosol. Based on previous observations that CTR1 proteins form high-molecular-mass complexes, we investigated directly whether CTR1 proteins interact with themselves.
View Article and Find Full Text PDFThe human copper transporter 1 gene (hCTR1) was previously identified by functional complementation in ctr1-deficient yeast. Overexpression of hCTR1 in wild-type yeast leads to increased sensitivity to copper toxicity, and mice with a homozygous disruption at the Ctr1 locus die early during embryogenesis. It is proposed that hCTR1 is responsible for high-affinity copper uptake into human cells, but the underlying molecular mechanisms are unknown.
View Article and Find Full Text PDF