Publications by authors named "Adriana Donovan"

Clinically relevant myopenia accompanies spinal cord injury (SCI), and compromises function, metabolism, body composition, and health. Myostatin, a transforming growth factor (TGF)β family member, is a key negative regulator of skeletal muscle mass. We investigated inhibition of myostatin signaling using systemic delivery of a highly selective monoclonal antibody - muSRK-015P (40 mg/kg) - that blocks release of active growth factor from the latent form of myostatin.

View Article and Find Full Text PDF

Spinal muscular atrophy (SMA) is a neuromuscular disease characterized by loss of α-motor neurons, leading to profound skeletal muscle atrophy. Patients also suffer from decreased bone mineral density and increased fracture risk. The majority of treatments for SMA, approved or in clinic trials, focus on addressing the underlying cause of disease, insufficient production of full-length SMN protein.

View Article and Find Full Text PDF

LGR4/5 receptors and their cognate RSPO ligands potentiate Wnt/β-catenin signalling and promote proliferation and tissue homeostasis in epithelial stem cell compartments. In the liver, metabolic zonation requires a Wnt/β-catenin signalling gradient, but the instructive mechanism controlling its spatiotemporal regulation is not known. We have now identified the RSPO-LGR4/5-ZNRF3/RNF43 module as a master regulator of Wnt/β-catenin-mediated metabolic liver zonation.

View Article and Find Full Text PDF

Transferrin receptor 1 (Tfr1) facilitates cellular iron uptake through receptor-mediated endocytosis of iron-loaded transferrin. It is expressed in the intestinal epithelium but not involved in dietary iron absorption. To investigate its role, we inactivated the Tfr1 gene selectively in murine intestinal epithelial cells.

View Article and Find Full Text PDF

Background And Aims: Endoprotease activation is a key step in acute pancreatitis and early inhibition of these enzymes may protect from organ damage. In vivo models commonly used to evaluate protease inhibitors require animal sacrifice and therefore limit the assessment of dynamic processes. Here, we established a non-invasive fluorescence imaging-based biomarker assay to assess real-time protease inhibition and disease progression in a preclinical model of experimental pancreatitis.

View Article and Find Full Text PDF

The gene transient receptor potential-melastatin-like 7 (Trpm7) encodes a protein that functions as an ion channel and a kinase. TRPM7 has been proposed to be required for cellular Mg2+ homeostasis in vertebrates. Deletion of mouse Trpm7 revealed that it is essential for embryonic development.

View Article and Find Full Text PDF

Iron is an essential element that is toxic when it accumulates in excess. Intricate regulatory mechanisms have evolved to maintain iron homeostasis within cells and between different tissues of complex organisms. This review discusses the proteins involved in iron transport and storage and their regulation in health and disease.

View Article and Find Full Text PDF

Iron has a fundamental role in many metabolic processes, including electron transport, deoxyribonucleotide synthesis, oxygen transport and many essential redox reactions involving haemoproteins and Fe-S cluster proteins. Defective iron homeostasis results in either iron deficiency or iron overload. Precise regulation of iron transport in mitochondria is essential for haem biosynthesis, haemoglobin production and Fe-S cluster protein assembly during red cell development.

View Article and Find Full Text PDF

Intestinal epithelial cells and reticuloendothelial macrophages are, respectively, involved in diet iron absorption and heme iron recycling from senescent erythrocytes, two critical processes of iron homeostasis. These cells appear to use the same transporter, ferroportin (Slc40a1), to export iron. The aim of this study was to compare the localization, expression, and regulation of ferroportin in both duodenal and macrophage cells.

View Article and Find Full Text PDF

Ferroportin (SLC40A1) is an iron transporter postulated to play roles in intestinal iron absorption and cellular iron release. Hepcidin, a regulatory peptide, binds to ferroportin and causes it to be internalized and degraded. If ferroportin is the major cellular iron exporter, ineffective hepcidin function could explain manifestations of human hemochromatosis disorders.

View Article and Find Full Text PDF

Missense mutations in ferroportin1 (fpn1), an intestinal and macrophage iron exporter, have been identified between transmembrane helices 3 and 4 in the zebrafish anemia mutant weissherbst (weh(Tp85c-/-)) and in patients with type 4 hemochromatosis. To explore the effects of fpn1 mutation on blood development and iron homeostasis in the adult zebrafish, weh(Tp85c-/-) zebrafish were rescued by injection with iron dextran and studied in comparison with injected and uninjected WT zebrafish and heterozygotes. Although iron deposition was observed in all iron-injected fish, only weh(Tp85c-/-) zebrafish exhibited iron accumulation in the intestinal epithelium compatible with a block in iron export.

View Article and Find Full Text PDF

Hepcidin is a peptide hormone secreted by the liver in response to iron loading and inflammation. Decreased hepcidin leads to tissue iron overload, whereas hepcidin overproduction leads to hypoferremia and the anemia of inflammation. Ferroportin is an iron exporter present on the surface of absorptive enterocytes, macrophages, hepatocytes, and placental cells.

View Article and Find Full Text PDF

Mammalian iron homeostasis requires meticulous control of proteins involved in intestinal iron absorption and tissue iron management. Recent studies in animal models have provided important insights into iron physiology. This review describes our current understanding of the regulation of iron trafficking and its perturbation in genetic iron disorders.

View Article and Find Full Text PDF

Most eukaryotic cell types use a common program to regulate the process of cell division. During mitosis, successful partitioning of the genetic material depends on spatially coordinated chromosome movement and cell cleavage. Here we characterize a zebrafish mutant, retsina (ret), that exhibits an erythroid-specific defect in cell division with marked dyserythropoiesis similar to human congenital dyserythropoietic anemia.

View Article and Find Full Text PDF

Iron is an essential nutrient required for the function of all cells, most notably for the production of hemoglobin in red blood cells. Defects in the mechanisms of iron absorption, storage, or utilization can lead to disorders of iron-limited erythropoiesis or iron overload. In an effort to further understand these processes, we have used the zebrafish as a genetic system to study vertebrate iron metabolism.

View Article and Find Full Text PDF