AtGRP3 is a glycine-rich protein from Arabidopsis thaliana shown to interact with the extracellular domain of the receptor-like kinase (RLK) AtWAK1. Based on previous functional data for AtWAK1, a model was proposed that AtGRP3 when bound to this RLK would negatively regulate its kinase activity, inhibiting cell expansion. Here, we review recent functional studies on AtGRP3 that corroborate this model and suggest that AtGRP3/AtWAK1 complex regulates also defense signaling pathways.
View Article and Find Full Text PDFAtGRP3 is a glycine-rich protein (GRP) from Arabidopsis thaliana shown to interact with the receptor-like kinase AtWAK1 in yeast, in vitro and in planta. In this work, phenotypic analyses using transgenic plants were performed in order to better characterize this GRP. Plants of two independent knockout alleles of AtGRP3 develop longer roots suggesting its involvement in root size determination.
View Article and Find Full Text PDFAlthough several glycine-rich protein (GRP) genes were isolated and characterized, very little is known about their function. The primary structure of AtGRP5 from Arabidopsis thaliana has a signal peptide followed by a region with high glycine content. In this work, green fluorescent protein fusions were obtained in order to characterize the sub-cellular localization of the AtGRP5 protein.
View Article and Find Full Text PDF