Background: Patients with balanced X-autosome translocations and premature ovarian insufficiency (POI) constitute an interesting paradigm to study the effect of chromosome repositioning. Their breakpoints are clustered within cytobands Xq13-Xq21, 80% of them in Xq21, and usually, no gene disruption can be associated with POI phenotype. As deletions within Xq21 do not cause POI, and since different breakpoints and translocations with different autosomes lead to this same gonadal phenotype, a "position effect" is hypothesized as a possible mechanism underlying POI pathogenesis.
View Article and Find Full Text PDFPremature ovarian insufficiency (POI) is the cessation of menstruation before the age of 40 and can result from different etiologies, including genetic, autoimmune, and iatrogenic. Of the genetic causes, single-gene mutations and cytogenetic alterations, such as X-chromosome aneuploidies and chromosome rearrangements, can be associated with POI. In this review, we summarize the genetic factors linked to POI and list the main candidate genes.
View Article and Find Full Text PDFBalanced chromosomal rearrangements are usually associated with a normal phenotype, although in some individuals, phenotypic alterations are observed. In these patients, molecular characterization of the breakpoints can reveal the pathogenic mechanism, providing the annotation of disease-associated loci and a better genotype-phenotype correlation. In this study, we describe a patient with a balanced reciprocal translocation between 4q27 and 7p22 associated with neurodevelopmental delay.
View Article and Find Full Text PDFqRT-PCR requires reliable internal control genes stably expressed in different samples and experimental conditions. The stability of reference genes is rarely tested experimentally, especially in developing tissues given the singularity of these samples. Here we evaluated the suitability of a set of reference genes (Actb, Gapdh, Tbp, Pgk1 and Sdha) using samples from early mouse embryo tissues that are widely used in research (somites, prosencephalon and heart) at different developmental stages.
View Article and Find Full Text PDFPrecise breakpoint mapping of balanced chromosomal rearrangements is crucial to identify disease etiology. Ten female patients with X-autosome balanced translocations associated with phenotypic alterations were evaluated, by mapping and sequencing their breakpoints. The rearrangements' impact on the expression of disrupted genes, and inferred mechanisms of formation in each case were assessed.
View Article and Find Full Text PDFWe report five individuals with loss-of-function of the X-linked AMMECR1: a girl with a balanced X-autosome translocation and inactivation of the normal X-chromosome; two boys with maternally inherited and de novo nonsense variants; and two half-brothers with maternally inherited microdeletion variants. They present with short stature, cardiac and skeletal abnormalities, and hearing loss. Variants of unknown significance in AMMECR1 in four male patients from two families with partially overlapping phenotypes were previously reported.
View Article and Find Full Text PDFIn females carrying structural rearrangements of an X-chromosome, cells with the best dosage balance are preferentially selected, frequently resulting in a skewed inactivation pattern and amelioration of the phenotype. The Xp11.23-p11.
View Article and Find Full Text PDFX-chromosome inactivation occurs randomly in normal female cells. However, the inactivation can be skewed in patients with alterations in X-chromosome. In balanced X-autosome translocations, normal X is preferentially inactivated, while in unbalanced X alterations, the aberrant X is usually inactivated.
View Article and Find Full Text PDFAm J Med Genet B Neuropsychiatr Genet
December 2015
Detailed molecular characterization of chromosomal rearrangements involving X-chromosome has been a key strategy in identifying X-linked intellectual disability-causing genes. We fine-mapped the breakpoints in four women with balanced X-autosome translocations and variable phenotypes, in order to investigate the corresponding genetic contribution to intellectual disability. We addressed the impact of the gene interruptions in transcription and discussed the consequences of their functional impairment in neurodevelopment.
View Article and Find Full Text PDF