The induction of systemic antibody titers against hemagglutinin has long been the main focus of influenza vaccination strategies, but mucosal immunity has also been shown to play a key role in the protection against respiratory viruses. By vaccinating and challenging healthy volunteers, we demonstrated that inactivated influenza vaccine (IIV) modestly reduced the rate of influenza while predominantly boosting serum antibody titers against hemagglutinin (HA) and HA stalk, a consequence of the low neuraminidase (NA) content of IIV and the intramuscular route of administration. The viral challenge induced nasal and serum responses against both HA and NA.
View Article and Find Full Text PDFDue to a combination of asymptomatic or undiagnosed infections, the proportion of the United States population infected with SARS-CoV-2 was unclear from the beginning of the pandemic. We previously established a platform to screen for SARS-CoV-2 positivity across a representative proportion of the US population, from which we reported that almost 17 million Americans were estimated to have had undocumented infections in the Spring of 2020. Since then, vaccine rollout and prevalence of different SARS-CoV-2 variants have further altered seropositivity trends within the United States population.
View Article and Find Full Text PDFBackground: Preclinical animal studies and retrospective human studies suggest that adult females have worse outcomes from influenza than males. Prospective studies in humans are missing.
Methods: Data from 164 healthy volunteers who underwent influenza A/California/04/2009/H1N1 challenge were compiled to compare differences between sexes.
Asymptomatic SARS-CoV-2 infection and delayed implementation of diagnostics have led to poorly defined viral prevalence rates in the United States and elsewhere. To address this, we analyzed seropositivity in 9089 adults in the United States who had not been diagnosed previously with COVID-19. Individuals with characteristics that reflected the U.
View Article and Find Full Text PDFDespite the importance of immunity against neuraminidase (NA), NA content and immunogenicity are neglected in current influenza vaccines. To address this, a recombinant N1/N2 NA vaccine (NAV) was developed. Stability assays were used to determine optimal temperature and buffer conditions for vaccine storage.
View Article and Find Full Text PDFAsymptomatic SARS-CoV-2 infection and delayed implementation of diagnostics have led to poorly defined viral prevalence rates. To address this, we analyzed seropositivity in US adults who have not previously been diagnosed with COVID-19. Individuals with characteristics that reflect the US population ( = 11,382) and who had not previously been diagnosed with COVID-19 were selected by quota sampling from 241,424 volunteers (ClinicalTrials.
View Article and Find Full Text PDFBackground: It is imperative to identify new targets for improved vaccines and therapeutics against influenza. One such target is the relatively conserved stalk region of the influenza A hemagglutinin (HA) surface protein.
Methods: We conducted a randomized, double-blind, phase 2, placebo-controlled trial of a monoclonal antibody that targets the HA stalk (CR6261) in a H1N1pdm09 healthy volunteer human challenge model.
Background: In animal models, immunity to mosquito salivary proteins protects animals against mosquito-borne disease. These findings provide a rationale to vaccinate against mosquito saliva instead of the pathogen itself. To our knowledge, no vector salivary protein-based vaccine has been tested for safety and immunogenicity in humans.
View Article and Find Full Text PDFFLU-v, developed by PepTcell (SEEK), is a peptide vaccine aiming to provide a broadly protective cellular immune response against influenza A and B. A randomized, double-blind, placebo-controlled, single-center, phase IIb efficacy and safety trial was conducted. One hundred and fifty-three healthy individuals 18-55 years of age were randomized to receive one or two doses of adjuvanted FLU-v or adjuvanted placebo subcutaneously on days -43 and -22, prior to intranasal challenge on day 0 with the A/California/04/2009/H1N1 human influenza A challenge virus.
View Article and Find Full Text PDFNasal wash samples from 15 human volunteers challenged with GMP manufactured influenza A/California/04/2009(H1N1) and from 5 naturally infected influenza patients of the 2009 pandemic were deep sequenced using viral targeted hybridization enrichment. Ten single nucleotide polymorphism (SNP) positions were found in the challenge virus. Some of the nonsynonymous changes in the inoculant virus were maintained in some challenge participants, but not in others, indicating that virus is evolving away from the Vero cell adapted inoculant, for example SNPs in the neuraminidase.
View Article and Find Full Text PDFIn this study, we examined the relationships between anti-influenza virus serum antibody titers, clinical disease, and peripheral blood leukocyte (PBL) global gene expression during presymptomatic, acute, and convalescent illness in 83 participants infected with 2009 pandemic H1N1 virus in a human influenza challenge model. Using traditional statistical and logistic regression modeling approaches, profiles of differentially expressed genes that correlated with active viral shedding, predicted length of viral shedding, and predicted illness severity were identified. These analyses further demonstrated that challenge participants fell into three peripheral blood leukocyte gene expression phenotypes that significantly correlated with different clinical outcomes and prechallenge serum titers of antibodies specific for the viral neuraminidase, hemagglutinin head, and hemagglutinin stalk.
View Article and Find Full Text PDFBackground: Identification of correlates of protection against human influenza A virus infection is important in development of broadly protective ("universal") influenza vaccines. Certain assumptions underlie current vaccine developmental strategies, including that infection with a particular influenza A virus should offer long-term or lifelong protection against that strain, preventing reinfection. In this study we report observations made when 7 volunteers participated in sequential influenza challenge studies where they were challenged intranasally using the identical influenza A(H1N1)pdm09 virus approximately 1 year apart.
View Article and Find Full Text PDFBackground: The development of vaccines and therapeutics has relied on healthy volunteer influenza challenge studies. A validated human infection model with wild-type A(H1N1)pdm09 was reported previously. Our objective was to characterize a wild-type influenza A/Bethesda/MM1/H3N2 challenge virus in healthy volunteers.
View Article and Find Full Text PDFThe piggyBac transposon was modified to generate gene trap constructs, which were then incorporated into the genome of the Asian malaria vector, and remobilized through genetic crosses using a piggyBac transposase expressing line. A total of 620 remobilization events were documented, and 73 were further characterized at the DNA level to identify patterns in insertion site preferences, remobilization frequencies, and remobilization patterns. Overall, the use of the tetameric AmCyan reporter as the fusion peptide displayed a preference for insertion into the 5'-end of transcripts.
View Article and Find Full Text PDFInfluenza virus hemagglutinin (HA) surface glycoprotein is currently the primary target of licensed influenza vaccines. Recently, broadly reactive antibodies that target the stalk region of the HA have become a major focus of current novel vaccine development. These antibodies have been observed in humans after natural infection with influenza A virus, but the data are limited.
View Article and Find Full Text PDF