Publications by authors named "Adriana Caballero"

Protein palmitoylation is the only reversible post-translational lipid modification. Palmitoylation is held in delicate balance by depalmitoylation to precisely regulate protein turnover. While over 20 palmitoylation enzymes are known, depalmitoylation is conducted by fewer enzymes.

View Article and Find Full Text PDF

In presynaptic terminals, membrane-delimited G-mediated presynaptic inhibition is ubiquitous and acts via Gβγ to inhibit Ca entry, or directly at SNARE complexes to inhibit Ca-dependent synaptotagmin-SNARE complex interactions. At CA1-subicular presynaptic terminals, 5-HT and GABA receptors colocalize. GABA receptors inhibit Ca entry, whereas 5-HT receptors target SNARE complexes.

View Article and Find Full Text PDF

The prefrontal cortex (PFC) is a cortical structure involved in a variety of complex functions in the cognitive and affective domains. The intrinsic function of the PFC is defined by the interaction of local glutamatergic and GABAergic neurons and their modulation by long-range inputs. The ensuing interactions generate a ratio of excitation and inhibition (E-I) in each output neuron, a balance which is refined during the adolescent to adult transition.

View Article and Find Full Text PDF

The expression of the calcium binding protein parvalbumin (PV) has been observed in several cortical regions during development in a temporal pattern consistent with increased afferent-dependent activity. In the prefrontal cortex (PFC), PV expression appears last and continues to substantially increase throughout adolescence, yet the significance of this increase remains unclear. Because of the expression of PV in fast-spiking GABAergic interneurons, we hypothesized that PV upregulation during adolescence is necessary to sustain the increase in GABAergic activity observed in the PFC during this period.

View Article and Find Full Text PDF

G protein-coupled receptor (GPCR) signaling is regulated by members of the protein kinase C (PKC) and GPCR kinase (GRK) families, although the relative contribution of each to GPCR function varies among specific GPCRs. The CC motif receptor 4 (CXCR4) is a member of the GPCR superfamily that binds the CC motif chemokine ligand 12 (CXCL12), initiating signaling that is subsequently terminated in part by internalization and lysosomal degradation of CXCR4. The purpose of this study is to define the relative contribution of PKC and GRK to CXCR4 signaling attenuation by studying their effects on CXCR4 lysosomal trafficking and degradation.

View Article and Find Full Text PDF

Oenococcus oeni UNQOe19 is a native strain isolated from a Patagonian pinot noir wine undergoing spontaneous malolactic fermentation. Here, we present the 1.83-Mb genome sequence of O.

View Article and Find Full Text PDF

The malolactic fermentation (MLF) of Patagonian Malbec wine inoculated with blend cultures of selected native strains of and was monitored during 14 days, analyzing the strains ability to modify the content of some organic acids and to change the volatile compounds profile. The performance of the LAB strains was tested as single and blends cultures of both species. An implantation control by RAPD PCR was also carried out to differentiate among indigenous and inoculated strains.

View Article and Find Full Text PDF

Adolescence is defined as a transitional period between childhood and adulthood characterized by changes in social interaction and acquisition of mature cognitive abilities. These changes have been associated with the maturation of brain regions involved in the control of motivation, emotion, and cognition. Among these regions, the protracted development of the human prefrontal cortex during adolescence has been proposed to underlie the maturation of cognitive functions and the regulation of affective responses.

View Article and Find Full Text PDF

Adolescence is a vulnerable period for the onset of mental illnesses including schizophrenia and affective disorders, yet the neurodevelopmental processes underlying this vulnerability remain poorly understood. The prefrontal cortex (PFC) and its local GABAergic system are thought to contribute to the core of cognitive deficits associated with such disorders. However, clinical and preclinical end-point analyses performed in adults are likely to give limited insight into the cellular mechanisms that are altered during adolescence but are only manifested in adulthood.

View Article and Find Full Text PDF

The adolescent susceptibility to the onset of psychiatric disorders is only beginning to be understood when factoring in the development of the prefrontal cortex (PFC). The functional maturation of the PFC is dependent upon proper integration of glutamatergic inputs from the ventral hippocampus (vHipp) and the basolateral amygdala (BLA). Here we assessed how transient NMDAR blockade during adolescence alters the functional interaction of vHipp-BLA inputs in regulating PFC plasticity.

View Article and Find Full Text PDF

Background: Refinement of mature cognitive functions, such as working memory and decision making, typically takes place during adolescence. The acquisition of these functions is linked to the protracted development of the prefrontal cortex (PFC) and dopamine facilitation of glutamatergic transmission. However, the mechanisms that support these changes during adolescence remain elusive.

View Article and Find Full Text PDF

Objective: The prefrontal cortex (PFC) receives multiple cortical and subcortical afferents that regulate higher order cognitive functions, many of which emerge late in adolescence. However, it remains unclear how these afferents influence PFC processing, especially in light of the protracted, late adolescent maturation of prefrontal GABAergic function. Here we investigated the role of PFC GABAergic transmission in regulating plasticity elicited from the ventral hippocampus and basolateral amygdala, and how such modulation undergoes functional changes during adolescence in rats.

View Article and Find Full Text PDF

Animal studies have highlighted the role of the ventral hippocampus-prefrontal cortex pathway in the acquisition of mature cortical function through refinement of GABAergic circuits during adolescence. Inhibitory GABAergic responses are mediated by highly specialized interneurons, which have distinct functional properties and are characterized by the expression of calcium binding proteins. Among these, we recently found that parvalbumin (PV)- and calretinin (CR)-positive interneurons in the prefrontal cortex follow opposite developmental trajectories during the periadolescent transition period.

View Article and Find Full Text PDF

Background: Drug experimentation during adolescence is associated with increased risk of drug addiction relative to any other age group. To further understand the neurobiology underlying such liability, we investigate how early adolescent cocaine experience impacts medial prefrontal cortex (mPFC) network function in adulthood.

Methods: A noncontingent administration paradigm was used to assess the impact of early adolescent cocaine treatment (rats; postnatal days [PD] 35-40) on the overall inhibitory regulation of mPFC activity in adulthood (PD 65-75) by means of histochemical and in vivo electrophysiological measures combined with pharmacologic manipulations.

View Article and Find Full Text PDF

The aim of this study was to evaluate fifty-three Lactobacillus plantarum isolates obtained from a Patagonian red wine, molecularly identified and typified using RAPD analysis, in order to select starter cultures for malolactic fermentation (MLF). The results obtained suggest a considerable genetic diversity, taking into account that all L. plantarum isolates were obtained from one cellar and one vintage.

View Article and Find Full Text PDF

Determining the normal developmental trajectory of individual GABAergic components in the prefrontal cortex (PFC) during the adolescent transition period is critical because local GABAergic interneurons are thought to play an important role in the functional maturation of cognitive control that occurs in this developmental window. Based on the expression of calcium-binding proteins, three distinctive subtypes of interneurons have been identified in the PFC: parvalbumin (PV)-, calretinin (CR)-, and calbindin (CB)-positive cells. Using biochemical and histochemical measures, we found that the protein level of PV is lowest in juveniles [postnatal days (PD) 25-35] and increases during adolescence (PD 45-55) to levels similar to those observed in adulthood (PD 65-75).

View Article and Find Full Text PDF

The cannabinoid receptor 1 (CB1R) is the G-protein coupled receptor responsible for the majority of the endocannabinoid signaling in the human brain. It is widely distributed in the limbic system, basal ganglia, and cerebellum, which are areas responsible for cognition, memory, and motor control. Because of this widespread distribution, it is not surprising that drugs that activate CB1R have expected behavioral outcomes consistent with dysregulated signaling from these areas (e.

View Article and Find Full Text PDF

Objective: There is clearly a necessity to identify novel non-dopaminergic mechanisms as new therapeutic targets for Parkinson's disease (PD). Among these, the soluble guanylyl cyclase (sGC)-cGMP signaling cascade is emerging as a promising candidate for second messenger-based therapies for the amelioration of PD symptoms. In the present study, we examined the utility of the selective sGC inhibitor 1H-[1], [2], [4] oxadiazolo-[4,3-a]quinoxalin-1-one (ODQ) for reversing basal ganglia dysfunction and akinesia in animal models of PD.

View Article and Find Full Text PDF

In this chapter, we describe a method for detecting the ubiquitination status of G protein-coupled receptors (GPCRs). This involves co-expression of a GPCR with an epitope-tagged ubiquitin construct in a -heterologous mammalian expression system. Stimulus-dependent modification of the GPCR by -ubiquitin is detected by immunoprecipitation and subsequent immunoblotting to detect incorporation of the epitope-tagged ubiquitin.

View Article and Find Full Text PDF

BCR-mediated Ag processing and presentation is critical to the initiation and control of a humoral immune response. Trafficking of internalized Ag-BCR complexes to intracellular Ag processing compartments is driven by ubiquitination of the cytoplasmic domain of the BCR. Using a biochemical approach, it is here established that ubiquitinated Ag-BCR complexes are formed via a signaling-dependent mechanism and restricted to plasma membrane lipid rafts.

View Article and Find Full Text PDF

The use of selected Saccharomyces and non-Saccharomyces strains as mixed starters in winemaking would have advantages over the traditional spontaneous fermentation, producing wines with predictable and desirable characteristics. The aim of this study was to evaluate the impact of metabolic interactions between Patagonian indigenous Saccharomyces cerevisiae MMf9 and beta-glucosidase producer Candida pulcherrima V(6) strains on alcoholic fermentation behaviour and wine aroma Three inoculation strategies, simultaneous, sequential and final, were assayed at laboratory-scale fermentations using Muscat d'Alexandrie grape juice as substrate. The fermentation and yeast growth kinetics as well as the physicochemical and the sensory quality of wine were evaluated.

View Article and Find Full Text PDF

The use of selected yeasts for winemaking has clear advantages over the traditional spontaneous fermentation. The aim of this study was to select an indigenous Saccharomyces cerevisiae yeast isolate in order to develop a regional North Patagonian red wine starter culture. A two-step selection protocol developed according to physiological, technological and ecological criteria based on killer interactions was used.

View Article and Find Full Text PDF

The diversity and killer behaviour of the yeast biota associated with surfaces of four Patagonian wineries were analyzed in the present study. These wineries were different in their technological and ecological features. Following liquid enrichment of samples from fermentation vat surfaces yeast isolates were identified by pheno- and genotyping and characterized using killer sensitivity patterns.

View Article and Find Full Text PDF

Early during de novo infection of human microvascular dermal endothelial (HMVEC-d) cells, Kaposi's sarcoma-associated herpesvirus (KSHV) (human herpesvirus 8 [HHV-8]) induces the host cell's preexisting FAK, Src, phosphatidylinositol 3-kinase (PI3-K), Rho-GTPases, Diaphanous-2 (Dia-2), Ezrin, protein kinase C-zeta, extracellular signal-regulated kinase 1/2 (ERK1/2), and NF-kappaB signal pathways that are critical for virus entry, nuclear delivery of viral DNA, and initiation of viral gene expression. Since several of these signal molecules are known to be associated with lipid raft (LR) domains, we investigated the role of LR during KSHV infection of HMVEC-d cells. Pretreatment of cells with LR-disrupting agents methyl beta-cyclo dextrin (MbetaCD) or nystatin significantly inhibited the expression of viral latent (ORF73) and lytic (ORF50) genes.

View Article and Find Full Text PDF

A novel anamorphic yeast species belonging to the genus Candida has been isolated from cellar surfaces in North Patagonia. Morphological and physiological observation and phylogenetic analysis were performed. Pseudomycelium was plentifully produced.

View Article and Find Full Text PDF