Publications by authors named "Adriana C Girardi"

Article Synopsis
  • Drug-induced hypomagnesemia can have serious and potentially fatal consequences, particularly from long-term use of proton pump inhibitors (PPIs), which impair magnesium absorption in the intestines.
  • The mechanisms involve reduced transport of magnesium through specific cellular channels (TRPM6 and TRPM7) and a decrease in paracellular absorption due to downregulated claudins.
  • Two cases are highlighted where PPI use led to electrolyte disorders resulting in cardiac arrhythmia, cognitive changes, and seizures, emphasizing the importance of monitoring magnesium levels in high-risk patients.
View Article and Find Full Text PDF

Aims: Emerging evidence suggests the existence of a crosstalk between dipeptidyl peptidase 4 (DPP4) and the renin-angiotensin system (RAS). Therefore, combined inhibition of DPP4 and RAS may produce similar pharmacological effects rather than being additive. This study tested the hypothesis that combining an inhibitor of DPP4 with an angiotensin II (Ang II) receptor blocker does not provide additional cardioprotection compared to monotherapy in heart failure (HF) rats.

View Article and Find Full Text PDF
Article Synopsis
  • The study explores how heart failure (HF) affects glucose homeostasis, focusing on the role of glucagon-like peptide-1 (GLP-1) levels in patients and animal models.
  • Results show that heart failure patients had a significantly lower increase in post-meal GLP-1 levels compared to healthy individuals, indicating impaired GLP-1 bioavailability.
  • The findings suggest that this reduction in GLP-1 may worsen glucose regulation and create a negative feedback loop that contributes to the progression of heart failure.
View Article and Find Full Text PDF

The ablation of renal nerves, by destroying both the sympathetic and afferent fibers, has been shown to be effective in lowering blood pressure in resistant hypertensive patients. However, experimental studies have reported that the removal of sympathetic fibers may lead to side effects, such as the impairment of compensatory cardiorenal responses during a hemodynamic challenge. In the present study, we evaluated the effects of the selective removal of renal afferent fibers on arterial hypertension, renal sympathetic nerve activity, and renal changes in a model of renovascular hypertension.

View Article and Find Full Text PDF

Background: Preconditioning of cell recipients may exert a significant role in attenuating the hostility of the infarction milieu, thereby enhancing the efficacy of cell therapy. This study was conducted to examine whether exercise training potentiates the cardioprotective effects of adipose-derived stem cell (ADSC) transplantation following myocardial infarction (MI) in rats.

Methods: Four groups of female Fisher-344 rats were studied: Sham; non-trained rats with MI (sMI); non-trained rats with MI submitted to ADSCs transplantation (sADSC); trained rats with MI submitted to ADSCs (tADSC).

View Article and Find Full Text PDF

Presympathetic neurons in the rostral ventrolateral medulla (RVLM) including the adrenergic cell groups play a major role in the modulation of several reflexes required for the control of sympathetic vasomotor tone and blood pressure (BP). Moreover, sympathetic vasomotor drive to the kidneys influence natriuresis and diuresis by inhibiting the cAMP/PKA pathway and redistributing the Na/H exchanger isoform 3 (NHE3) to the body of the microvilli in the proximal tubules. In this study we aimed to evaluate the effects of renal afferents stimulation on (1) the neurochemical phenotype of Fos expressing neurons in the medulla oblongata and (2) the level of abundance and phosphorylation of NHE3 in the renal cortex.

View Article and Find Full Text PDF

Background: Renovascular hypertension (2-kidney 1-clip model (2K1C)) is characterized by renin-angiotensin system (RAS) activation. Increased Angiotensin II (AngII) leads to sympathoexcitation, oxidative stress, and alterations in sodium and water balance.

Aim: The aim of this study was to evaluate whether a discrete increase in sodium chloride intake in 2K1C rats leads to changes in cardiovascular and autonomic function, oxidative stress, and renin angiotensin aldosterone system.

View Article and Find Full Text PDF

Binding of angiotensin II (ANG II) to the AT receptor (ATR) in the proximal tubule stimulates Na/H exchanger isoform 3 (NHE3) activity through multiple signaling pathways. However, the effects of ANG II/ATR-induced inihibitory G protein (G) activation and subsequent decrease in cAMP accumulation on NHE3 regulation are not well established. We therefore tested the hypothesis that ANG II reduces cAMP/PKA-mediated phosphorylation of NHE3 on serine 552 and, in doing so, stimulates NHE3 activity.

View Article and Find Full Text PDF

Circulating dipeptidyl peptidase IV (DPPIV) activity is associated with worse cardiovascular outcomes in humans and experimental heart failure (HF) models, suggesting that DPPIV may play a role in the pathophysiology of this syndrome. Renal dysfunction is one of the key features of HF, but it remains to be determined whether DPPIV inhibitors are capable of improving cardiorenal function after the onset of HF. Therefore, the present study aimed to test the hypothesis that DPPIV inhibition by vildagliptin improves renal water and salt handling and exerts anti-proteinuric effects in rats with established HF.

View Article and Find Full Text PDF

Unlabelled: The main bottleneck in studies aiming to identify novel biomarkers in acute kidney injury (AKI) has been the identification of markers that are organ and process specific. Here, we have used different tissues from a controlled porcine renal ischemia/reperfusion (I/R) model to identify new, predominantly renal biomarker candidates for kidney disease. Urine and serum samples were analyzed in pre-ischemia, ischemia (60min) and 4, 11 and 16h post-reperfusion, and renal cortex samples after 24h of reperfusion.

View Article and Find Full Text PDF

Circulating dipeptidyl peptidase IV (DPPIV) activity correlates with cardiac dysfunction in humans and experimental heart failure (HF) models. Similarly, inflammatory markers are associated with poorer outcomes in HF patients. However, the contributions of DPPIV to inflammation in HF remain elusive.

View Article and Find Full Text PDF

Several evidences have shown that salt excess is an important determinant of cardiovascular and renal derangement in hypertension. The present study aimed to investigate the renal effects of chronic high or low salt intake in the context of hypertension and to elucidate the molecular mechanisms underlying such effects. To this end, newly weaned male SHR were fed with diets only differing in NaCl content: normal salt (NS: 0.

View Article and Find Full Text PDF

Glucagon like peptide-1 (GLP-1) is an incretin hormone constantly secreted from the intestine at low basal levels in the fasted state; plasma concentrations rise rapidly after nutrient ingestion. Upon release, GLP-1 exerts insulinotropic effects via a G protein-coupled receptor, stimulation of adenylyl cyclase, and cAMP generation. Although primarily involved in glucose homeostasis, GLP-1 can induce diuresis and natriuresis when administered in pharmacological doses in humans and rodents.

View Article and Find Full Text PDF

Physiological concentrations of angiotensin II (ANG II) upregulate the activity of Na(+)/H(+) exchanger isoform 3 (NHE3) in the renal proximal tubule through activation of the ANG II type I (AT1) receptor/G protein-coupled signaling. This effect is key for maintenance of extracellular fluid volume homeostasis and blood pressure. Recent findings have shown that selective activation of the beta-arrestin-biased AT1 receptor signaling pathway induces diuresis and natriuresis independent of G protein-mediated signaling.

View Article and Find Full Text PDF

Vitamin D deficiency (VDD) is widespread in the general population. Iodinated (IC) or gadolinium-based contrast media (Gd) may decrease renal function in high-risk patients. This study tested the hypothesis that VDD is a predisposing factor for IC- or Gd-induced nephrotoxicity.

View Article and Find Full Text PDF

What is the topic of this review? The sympathetic control of renal sodium tubular reabsorption is dependent on activation of the intrarenal renin-angiotensin system and activation of the angiotensin II type 1 (AT1 ) receptor by angiotensin II. What advances does it highlight? Despite the fact that the interaction between the sympathetic nervous system and angiotensin II regarding salt reabsorption is a well-known classical mechanism for the maintenance of extracellular volume homeostasis, the underlying molecular signalling is not clearly understood. It has been shown recently that renal nerve stimulation increases intrarenal angiotensin II and activates the AT1 receptor, triggering a signalling cascade that leads to elevations of Na(+) -H(+) exchanger isoform 3-mediated tubular transport.

View Article and Find Full Text PDF

Dipeptidyl peptidase IV (DPPIV) is a widely expressed multifunctional serine peptidase that exists as a membrane-anchored cell surface protein or in a soluble form in the plasma and other body fluids. Numerous substrates are cleaved at the penultimate amino acid by DPPIV, including glucagon-like peptide-1 (GLP-1), brain natriuretic peptide (BNP) and stromal cell-derived factor-1 (SDF-α), all of which play important roles in the cardiovascular system. In this regard, recent reports have documented that circulating DPPIV activity correlates with poorer cardiovascular outcomes in human and experimental heart failure (HF).

View Article and Find Full Text PDF

Renal nerve stimulation at a low frequency (below 2 Hz) causes water and sodium reabsorption via α1-adrenoreceptor tubular activation, a process independent of changes in systemic blood pressure, renal blood flow, or glomerular filtration rate. However, the underlying mechanism of the reabsorption of sodium is not fully understood. Since the sympathetic nervous system and intrarenal ANG II appear to act synergistically to mediate the process of sodium reabsorption, we hypothesized that low-frequency acute electrical stimulation of the renal nerve (ESRN) activates NHE3-mediated sodium reabsorption via ANG II AT1 receptor activation in Wistar rats.

View Article and Find Full Text PDF

Background: Several clinical studies have demonstrated that angiotensin II antagonists exert renoprotective effects beyond blood pressure control in hypertensive patients. The present work aimed to test the hypothesis that the antiproteinuric effects of losartan are associated with upregulation of the multi-ligand endocytic receptors megalin and cubilin in the proximal tubule of spontaneously hypertensive rats (SHR).

Materials And Methods: Fourteen-week-old SHRs were orally treated for 7 weeks with losartan (50 mg/kg, SHR-L), hydralazine (30 mg/kg, SHR-H), or vehicle (SHR-V).

View Article and Find Full Text PDF

Several techniques to induce renal ischemia have been proposed: clamp, PVA particles, and catheter-balloon. We report the development of a controlled, single-insult model of unilateral renal ischemia/reperfusion (I/R) without contralateral nephrectomy, using a suitable model, the pig. This is a balloon-catheter-based model using a percutaneous, interventional radiology procedure.

View Article and Find Full Text PDF

Cumulative evidence suggests that guanylin peptides play an important role on electrolyte homeostasis. We have previously reported that uroguanylin (UGN) inhibits bicarbonate reabsorption in a renal distal tubule. In the present study, we tested the hypothesis that the bicarbonaturic effect of UGN is at least in part attributable to inhibition of H(+)-ATPase-mediated hydrogen secretion in the distal nephron.

View Article and Find Full Text PDF

Low-level laser therapy (LLLT) has been used as an anti-inflammatory treatment in several disease conditions, even when inflammation is a secondary consequence, such as in myocardial infarction (MI). However, the mechanism by which LLLT is able to protect the remaining myocardium remains unclear. The present study tested the hypothesis that LLLT reduces inflammation after acute MI in female rats and ameliorates cardiac function.

View Article and Find Full Text PDF

Na(+)-glucose cotransporter 1 (SGLT1)-mediated glucose uptake leads to activation of Na(+)-H(+) exchanger 3 (NHE3) in the intestine by a process that is not dependent on glucose metabolism. This coactivation may be important for postprandial nutrient uptake. However, it remains to be determined whether SGLT-mediated glucose uptake regulates NHE3-mediated NaHCO3 reabsorption in the renal proximal tubule.

View Article and Find Full Text PDF

Background: The present study addresses the hypothesis that the activity of dipeptidyl peptidase IV (DPPIV), an enzyme that inactivates peptides that possess cardioprotective actions, correlates with adverse outcomes in heart failure (HF). The therapeutic potential of DPPIV inhibition in preventing cardiac dysfunction is also investigated.

Methods And Results: Measurements of DPPIV activity in blood samples obtained from 190 patients with HF and 42 controls demonstrated that patients with HF exhibited an increase of ≈130% in circulating DPPIV activity compared with healthy subjects.

View Article and Find Full Text PDF

Cumulative epidemiological evidence indicates that the presence of microalbuminuria predicts a higher frequency of cardiovascular events, peripheral disease, and mortality in essential hypertension. Microalbuminuria may arise from increased glomerular permeability and/or reduced proximal tubular reabsorption of albumin by receptor-mediated endocytosis. This study aimed to evaluate the temporal pattern of urinary protein excretion and to test the hypothesis that progression of microalbuminuria is associated with decreased protein expression of critical components of the endocytic apparatus in the renal proximal tubule of spontaneously hypertensive rats (SHR).

View Article and Find Full Text PDF