Publications by authors named "Adriana Buskin"

Immune checkpoint blockade has yet to produce robust anti-cancer responses for prostate cancer. Sialyltransferases have been shown across several solid tumours, including breast, melanoma, colorectal and prostate to promote immune suppression by synthesising sialoglycans, which act as ligands for Siglec receptors. We report that ST3 beta-galactoside alpha-2,3-sialyltransferase 1 (ST3Gal1) levels negatively correlate with androgen signalling in prostate tumours.

View Article and Find Full Text PDF

Aberrant glycosylation is a universal feature of cancer cells, and cancer-associated glycans have been detected in virtually every cancer type. A common change in tumour cell glycosylation is an increase in α2,6 sialylation of N-glycans, a modification driven by the sialyltransferase ST6GAL1. ST6GAL1 is overexpressed in numerous cancer types, and sialylated glycans are fundamental for tumour growth, metastasis, immune evasion, and drug resistance, but the role of ST6GAL1 in prostate cancer is poorly understood.

View Article and Find Full Text PDF

A key challenge in the clinical management and cause of treatment failure of prostate cancer (PCa) is its molecular, cellular and clinical heterogeneity. Modelling systems that fully recapitulate clinical diversity and resistant phenotypes are urgently required for the development of successful personalised PCa therapies. The advent of the three-dimensional (3D) organoid model has revolutionised preclinical cancer research through reflecting heterogeneity and offering genomic and environmental manipulation that has opened up unparalleled opportunities for applications in disease modelling, high-throughput drug screening and precision medicine.

View Article and Find Full Text PDF

The reactivation of developmental genes and pathways during adulthood may contribute to pathogenesis of diseases such as prostate cancer. Analysis of the mechanistic links between development and disease could be exploited to identify signalling pathways leading to disease in the prostate. However, the mechanisms underpinning prostate development require further characterisation to interrogate fully the link between development and disease.

View Article and Find Full Text PDF
Article Synopsis
  • Mutations in PRPF31, a critical protein in the spliceosomal tri-snRNP complex, lead to autosomal-dominant retinitis pigmentosa, a disease primarily affecting the retina despite PRPF31's widespread expression in the body.
  • Researchers used induced pluripotent stem cell (iPSC) technology to create retinal organoids and RPE models from patients with severe PRPF31-related RP, uncovering significant disruptions in RNA splicing and related cellular pathways.
  • The accumulation of cytoplasmic aggregates containing mutant PRPF31 and misfolded proteins causes splicing defects and cellular stress, but targeting the autophagy pathway can reduce these aggregates and improve cell survival.
View Article and Find Full Text PDF

The prostate is vulnerable to two major age-associated diseases, cancer and benign enlargement, which account for significant morbidity and mortality for men across the globe. Prostate cancer is the most common cancer reported in men, with over 1.2 million new cases diagnosed and 350,000 deaths recorded annually worldwide.

View Article and Find Full Text PDF

Two cell lines were generated by CRISPR/Cas9 mediated knockout of MKK7 (MAP2K7) by removal of exon 1 or exons 4 through 7. These knockouts were confirmed at the transcript and protein levels. These hESCs are pluripotent and maintain tri-lineage differentiation capacity.

View Article and Find Full Text PDF

Primary culture of human prostate organoids and patient-derived xenografts is inefficient and has limited access to clinical tissues. This hampers their use for translational study to identify new treatments. To overcome this, we established a complementary approach where rapidly proliferating and easily handled induced pluripotent stem cells enabled the generation of human prostate tissue in vivo and in vitro.

View Article and Find Full Text PDF

One of the key issues hampering the development of effective treatments for prostate cancer is the lack of suitable, tractable, and patient-specific in vitro models that accurately recapitulate this disease. In this review, we address the challenges of using primary cultures and patient-derived xenografts to study prostate cancer. We describe emerging approaches using primary prostate epithelial cells and prostate organoids and their genetic manipulation for disease modelling.

View Article and Find Full Text PDF

Retinitis pigmentosa (RP) is the most common form of inherited vision loss and is characterized by degeneration of retinal photoreceptor cells and the retinal pigment epithelium (RPE). Mutations in pre-mRNA processing factor 31 () cause dominant RP via haploinsufficiency with incomplete penetrance. There is good evidence that the diverse severity of this disease is a result of differing levels of expression of the wild-type allele among patients.

View Article and Find Full Text PDF

Mutations in pre-mRNA processing factors (PRPFs) cause autosomal-dominant retinitis pigmentosa (RP), but it is unclear why mutations in ubiquitously expressed genes cause non-syndromic retinal disease. Here, we generate transcriptome profiles from RP11 (PRPF31-mutated) patient-derived retinal organoids and retinal pigment epithelium (RPE), as well as Prpf31 mouse tissues, which revealed that disrupted alternative splicing occurred for specific splicing programmes. Mis-splicing of genes encoding pre-mRNA splicing proteins was limited to patient-specific retinal cells and Prpf31 mouse retinae and RPE.

View Article and Find Full Text PDF

The m.3243A > G mitochondrial DNA mutation was originally described in patients with mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes. The phenotypic spectrum of the m.

View Article and Find Full Text PDF

Age-related macular degeneration (AMD) is the most common cause of blindness, accounting for 8.7% of all blindness globally. Vision loss is caused ultimately by apoptosis of the retinal pigment epithelium (RPE) and overlying photoreceptors.

View Article and Find Full Text PDF