Publications by authors named "Adrian W Draney"

We have used velocity map ion imaging to measure the angular anisotropy of the NO (A) products from the photodissociation of the N-NO complex. Our experiment ranged from 108 to 758 cm above the threshold energy to form NO (A) + N (X) products, and these measurements reveal, for the first time, a strong angular anisotropy from photodissociation. At 108 cm above the photodissociation threshold, we observed NO (A) photoproducts recoil preferentially perpendicular to the laser polarization axis with an average anisotropy parameter, β = -0.

View Article and Find Full Text PDF

Narrow proton signals, high sensitivity, and efficient coherence transfers provided by fast magic-angle spinning at high magnetic fields make automated projection spectroscopy feasible for the solid-state NMR analysis of proteins. We present the first ultrahigh dimensional implementation of this approach, where 5D peak lists are reconstructed from a number of 2D projections for protein samples of different molecular sizes and aggregation states, which show limited dispersion of chemical shifts or inhomogeneous broadenings. The resulting datasets are particularly suitable to automated analysis and yield rapid and unbiased assignments of backbone resonances.

View Article and Find Full Text PDF

In vitro studies of protein structure, function, and dynamics typically preclude the complex range of molecular interactions found in living tissues. In vivo studies elucidate these complex relationships, yet they are typically incompatible with the extensive and controlled biophysical experiments available in vitro. We present an alternative approach by extracting membranes from eukaryotic tissues to produce native bicelles to capture the rich and complex molecular environment of in vivo studies while retaining the advantages of in vitro experiments.

View Article and Find Full Text PDF

Hybrid NMR (hdNMR) is a powerful new tool that combines the strengths of solution- and solid-state NMR to measure dipolar, chemical shift, and quadrupolar tensors in aqueous solution. We introduce the theory of hdNMR and partially randomly oriented (PRO) crystalline hydrogel samples. PRO samples produce randomly oriented spectra with characteristic Pake patterns from the solid state, yet they maintain the high-resolution dispersion of solution NMR experiments.

View Article and Find Full Text PDF

Residual Dipolar Couplings (RDCs) are integral to the refinement of membrane protein structures by NMR since they accurately define the orientation of helices and other structural units. Only a small set of liquid crystals used for RDC measurements are compatible with the detergents needed in membrane protein studies. The available detergent-compatible liquid crystals are negatively charged, thus offering effectively only one of five orthogonal components of the alignment Saupe matrix.

View Article and Find Full Text PDF

The highly conserved N-terminal 23 residues of the hemagglutinin glycoprotein, known as the fusion peptide domain (HAfp23), is vital to the membrane fusion and infection mechanism of the influenza virus. HAfp23 has a helical hairpin structure consisting of two tightly packed amphiphilic helices that rest on the membrane surface. We demonstrate that HAfp23 is a new class of amphipathic helix that functions by leveraging the negative curvature induced by two tightly packed helices on membranes.

View Article and Find Full Text PDF

Isotropically tumbling discoidal bicelles are a useful biophysical tool for the study of lipids and proteins by NMR, dynamic light scattering, and small-angle X-ray scattering. Isotropically tumbling bicelles present a low-curvature central region, typically enriched with DMPC in the lamellar state, and a highly curved detergent rim, typically composed of DHPC. In this report, we study the impact of the partitioning and induced curvature of a few molecules of a foreign lipid on the bicelle size, structure, and curvature.

View Article and Find Full Text PDF